
Week1

Let’s get started

We want you to be successful.

We will work together to build an environment in CSE 20 that supports your learning in a way that respects
your perspectives, experiences, and identities. Our goal is for you to engage with interesting and challenging
concepts and feel comfortable exploring, asking questions, and thriving.

If you or someone you know is su↵ering from food and/or housing insecurities there are UCSD resources
here to help:

Basic Needs O�ce: https://basicneeds.ucsd.edu/

Triton Food Pantry (in the old Student Center) is free and anonymous, and includes produce:

https://www.facebook.com/tritonfoodpantry/

Financial aid resources, the possibility of emergency grant funding, and o↵-campus housing referral resources
are available: see your College Dean of Student A↵airs.

If you find yourself in an uncomfortable situation, ask for help. We are committed to upholding Univer-
sity policies regarding nondiscrimination, sexual violence and sexual harassment. Here are some campus
contacts that could provide this help: Counseling and Psychological Services (CAPS) at 858 534-3755 or
http://caps.ucsd.edu; OPHD at 858 534-8298 or ophd@ucsd.edu , http://ophd.ucsd.edu; CARE at Sexual
Assault Resource Center at 858 534-5793 or sarc@ucsd.edu , http://care.ucsd.edu.

Please reach out (minnes@ucsd.edu) if you need support with extenuating circumstances a↵ecting CSE 20.

CC BY-NC-SA 2.0 Version January 4, 2026 (1)

https://basicneeds.ucsd.edu/
https://www.facebook.com/tritonfoodpantry/
http://caps.ucsd.edu
http://ophd.ucsd.edu
http://care.ucsd.edu
https://creativecommons.org/licenses/by-nc-sa/2.0/

Welcome to CSE 20: Discrete Math for CS in Winter 2026!

Class website: https://canvas.ucsd.edu/ Instructor: Prof. Mia Minnes ”Minnes” rhymes with Guinness, minnes@ucsd.edu,
http://cseweb.ucsd.edu/ minnes. CSE 20 team: One instructor + two TAs and three tutors + all of you

Fill in contact info for students around you, if you’d like:

On a typical week in CSE 20: MWF Lectures (sometimes with pre-class reading), M Discussion + review
quiz due, then (every second) Th Homework due. O�ce hours (hosted by instructors and TAs and tutors)
where you can come to talk about course concepts and ask for help as you work through sample problems
and Q+A on Piazza available throughout the week. CSE 20 has two in-term tests and one final exam this
quarter. What you can find on the class website on Canvas (https://canvas.ucsd.edu/):

1. Syllabus

2. Notes for class + annotations

3. PrairieLearn

4. Assignments (PDF, tex, solutions)

5. Gradescope

6. Piazza

7. Dates

There are lots of great reasons to have a laptop, tablet, or phone open during class. You might be taking
notes, getting a photo of an important moment on the board, trying out a construction that we’re developing
together, working on the review quiz, and so on. The main issue with screens and technology in the classroom
isn’t that they might distract you, it’s the distraction of other students. We ask that if you would like to
use a device in class and may have have unrelated content open, please sit in one of the back two rows of
the room so that it’s not adversely a↵ecting other students.

Pro-tip: you can use MATH109 to replace CSE20 for prerequisites and other requirements.

Themes and applications for CSE 20

• Technical skepticism: Know, select and apply appropriate computing knowledge and problem-
solving techniques. Reason about computation and systems. Use mathematical techniques to solve
problems. Determine appropriate conceptual tools to apply to new situations. Know when tools do
not apply and try di↵erent approaches. Critically analyze and evaluate candidate solutions.

• Multiple representations: Understand, guide, shape impact of computing on society/the world.
Connect the role of Theory CS classes to other applications (in undergraduate CS curriculum and
beyond). Model problems using appropriate mathematical concepts. Clearly and unambiguously
communicate computational ideas using appropriate formalism. Translate across levels of abstraction.

Applications: Numbers (how to represent them and use them in Computer Science), Recommendation
systems and their roots in machine learning (with applications like Netflix), “Under the hood” of computers
(circuits, pixel color representation, data structures), Codes and information (secret message sharing and
error correction), Bioinformatics algorithms and genomics (DNA and RNA).

CC BY-NC-SA 2.0 Version January 4, 2026 (2)

https://canvas.ucsd.edu//
http://cseweb.ucsd.edu/~minnes
https://canvas.ucsd.edu/
https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 1 at a glance

We will be learning and practicing to:

• Model systems with tools from discrete mathematics and reason about implications of modelling
choices. Explore applications in CS through multiple perspectives, including software, hardware, and
theory.

– Selecting and representing appropriate data types and using notation conventions to clearly
communicate choices

• Translate between di↵erent representations to illustrate a concept.

– Translating between symbolic and English versions of statements using precise mathematical
language

• Use precise notation to encode meaning and present arguments concisely and clearly

– Defining important sets of numbers, e.g. set of integers, set of rational numbers

– Precisely describing a set using appropriate notation e.g. roster method, set builder notation,
and recursive definitions

– Defining functions using multiple representations

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems. Use mathematical techniques to solve problems. Determine appro-
priate conceptual tools to apply to new situations. Know when tools do not apply and try di↵erent
approaches. Critically analyze and evaluate candidate solutions.

– Using a recursive definition to evaluate a function or determine membership in a set

TODO:

#FinAid Assignment on Canvas https://canvas.ucsd.edu/courses/71479/quizzes/235977 (com-
plete as soon as possible)

Review quiz based on class material (due Monday 01/12/2026)

Homework assignment 1 (due Thursday 01/15/2026)

CC BY-NC-SA 2.0 Version January 4, 2026 (3)

https://canvas.ucsd.edu/courses/71479/quizzes/235977
https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 1 Monday: Modeling applications

What data should we encode about each Netflix account holder to help us make e↵ective recommendations?

In machine learning, clustering can be used to group similar data for prediction and recommendation. For
example, each Netflix user’s viewing history can be represented as a n-tuple indicating their preferences
about movies in the database, where n is the number of movies in the database. People with similar tastes
in movies can then be clustered to provide recommendations of movies for one another. Mathematically,
clustering is based on a notion of distance between pairs of n-tuples.

Data Types: sets, n-tuples, and strings

Term Examples:
(add additional examples from class)

set

unordered collection of elements
7 2 {43, 7, 9} 2 /2 {43, 7, 9}

repetition doesn’t matter
Equal sets agree on membership of all elements
n-tuple

ordered sequence of elements with n “slots” (n > 0)
repetition matters, fixed length
Equal n-tuples have corresponding components equal
string

ordered finite sequence of elements each from specified set (called
the alphabet over which the string is defined)
repetition matters, arbitrary finite length
Equal strings have same length and corresponding characters equal

Special cases:

When n = 2, the 2-tuple is called an ordered pair.

A string of length 0 is called the empty string and is denoted �.

A set with no elements is called the empty set and is denoted {} or ;.

CC BY-NC-SA 2.0 Version January 4, 2026 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

In the table below, each row represents a user’s ratings of movies: 3 (check) indicates the person liked the
movie, 7 (x) that they didn’t, and • (dot) that they didn’t rate it one way or another (neutral rating or
didn’t watch). Can encode these ratings numerically with 1 for 3 (check), �1 for 7 (x), and 0 for • (dot).

Person Superman Wicked KPop Demon Hunters A Minecraft Movie Ratings written as a 4-tuple
P1 7 • 3

P2 3 3 7

P3 3 3 3

P4 • 7 3

Y ou

Conclusion: Modeling involves choosing data types to represent and organize data

CC BY-NC-SA 2.0 Version January 4, 2026 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 1 Wednesday: Defining sets

Notation and prerequisites

Term Notation Example(s) We say in English . . .

all reals R The (set of all) real numbers (numbers on the number
line)

all integers Z The (set of all) integers (whole numbers including neg-
atives, zero, and positives)

all positive integers Z+ The (set of all) strictly positive integers
all natural numbers N The (set of all) natural numbers (nonnegative integers).

We use the convention that 0 is a natural number.

To define sets:

To define a set using roster method, explicitly list its elements. That is, start with { then list elements
of the set separated by commas and close with }.

To define a set using set builder definition, either form “The set of all x from the universe U such that
x is ...” by writing

{x 2 U | ...x...}

or form “the collection of all outputs of some operation when the input ranges over the universe U” by
writing

{...x... | x 2 U}

We use the symbol 2 as “is an element of” to indicate membership in a set.

CC BY-NC-SA 2.0 Version January 4, 2026 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example sets: For each of the following, identify whether it’s defined using the roster method or set
builder notation and give an example element.

Can we infer the data type of the example element from the notation?

{�1, 1}

{0, 0}

{�1, 0, 1}

{(x, x, x) | x 2 {�1, 0, 1}}

{}

{x 2 Z | x � 0}

{x 2 Z | x > 0}

{^,.}

{A, C, U, G}

{AUG, UAG, UGA, UAA}

CC BY-NC-SA 2.0 Version January 4, 2026 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

RNA is made up of strands of four di↵erent bases that encode genomic information in specific ways.
The bases are elements of the set B = {A, C, U, G}. Strands are ordered nonempty finite sequences of bases.

Formally, to define the set of all RNA strands, we need more than roster method or set builder descriptions.

New! Recursive Definitions of Sets: The set S (pick a name) is defined by:

Basis Step: Specify finitely many elements of S
Recursive Step: Give rule(s) for creating a new element of S from known values existing in S,

and potentially other values.

The set S then consists of all and only elements that are put in S by finitely many (a nonnegative integer
number) of applications of the recursive step after the basis step.

Definition The set of nonnegative integers N is defined (recursively) by:

Basis Step:
Recursive Step:

Examples:

Definition The set of all integers Z is defined (recursively) by:

Basis Step:
Recursive Step:

Examples:

Definition The set of RNA strands S is defined (recursively) by:

Basis Step: A 2 S, C 2 S, U 2 S, G 2 S

Recursive Step: If s 2 S and b 2 B, then sb 2 S

where sb is string concatenation.

Examples:

Definition The set of bitstrings (strings of 0s and 1s) is defined (recursively) by:

Basis Step:
Recursive Step:

Notation: We call the set of bitstrings {0, 1}⇤ and we say this is the set of all strings over {0, 1}.

Examples:

CC BY-NC-SA 2.0 Version January 4, 2026 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

To define a set we can use the roster method, set builder notation, a recursive definition, and also we can
apply a set operation to other sets.

New! Cartesian product of sets and set-wise concatenation of sets of strings

Definition: Let X and Y be sets. The Cartesian product of X and Y , denoted X ⇥ Y , is the set of all
ordered pairs (x, y) where x 2 X and y 2 Y

X ⇥ Y = {(x, y) | x 2 X and y 2 Y }

Conventions: (1) Cartesian products can be chained together to result in sets of n-tuples and (2) When
we form the Cartesian product of a set with itself X ⇥ X we can denote that set as X

2, or X
n for the

Cartesian product of a set with itself n times for a positive integer n.

Definition: Let X and Y be sets of strings over the same alphabet. The set-wise concatenation of X
and Y , denoted X � Y , is the set of all results of string concatenation xy where x 2 X and y 2 Y

X � Y = {xy | x 2 X and y 2 Y }

Pro-tip: the meaning of writing one element next to another like xy depends on the data-types of x and
y. When x and y are strings, the convention is that xy is the result of string concatenation. When x and
y are numbers, the convention is that xy is the result of multiplication. This is (one of the many reasons)
why is it very important to declare the data-type of variables before we use them.

Fill in the missing entries in the table:

Set Example elements in this set and their data type:

B A C G U

(A, C) (U, U)

B ⇥ {�1, 0, 1}

{�1, 0, 1}⇥ B

(0, 0, 0)

{A, C, G, U} � {A, C, G, U}

GGGG

CC BY-NC-SA 2.0 Version January 4, 2026 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 1 Friday: Defining functions

Term Notation Example(s) We say in English . . .

sequence x1, . . . , xn A sequence x1 to xn

summation
Pn

i=1 xi or
nX

i=1

xi The sum of the terms of the sequence x1

to xn

piecewise rule
definition

f(x) =

(
rule 1 for x when COND 1

rule 2 for x when COND 2
Define f of x to be the result of applying
rule 1 to x when condition COND 1 is true
and the result of applying rule 2 to x when
condition COND 2 is true. This can be
generalized to having more than two con-
ditions (or cases).

function applica-
tion

f(7) f of 7 or f applied to 7 or the image of 7
under f

f(z) f of z or f applied to z or the image of z
under f

f(g(z)) f of g of z or f applied to the result of g
applied to z

absolute value |�3| The absolute value of �3
square root

p
9 The non-negative square root of 9

Pro-tip: the meaning of two vertical lines | | depends on the data-types of what’s between the lines. For
example, when placed around a number, the two vertical lines represent absolute value. We’ve seen a single
vertial line | used as part of set builder definitions to represent “such that”. Again, this is (one of the many
reasons) why is it very important to declare the data-type of variables before we use them.

New! Defining functions A function is defined by its (1) domain, (2) codomain, and (3) rule assigning
each element in the domain exactly one element in the codomain.

The domain and codomain are nonempty sets.
The rule can be depicted as a table, formula, piecewise definition, or English description.
The notation is

“Let the function FUNCTION-NAME: DOMAIN ! CODOMAIN be given by
FUNCTION-NAME(x) = . . . for every x 2 DOMAIN”.

or

“Consider the function FUNCTION-NAME: DOMAIN ! CODOMAIN defined as
FUNCTION-NAME(x) = . . . for every x 2 DOMAIN”.

CC BY-NC-SA 2.0 Version January 4, 2026 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: The absolute value function

Domain

Codomain

Rule

Recall our representation of Netflix users’ ratings of movies as n-tuples, where n is the number of movies
in the database. Each component of the n-tuple is �1 (didn’t like the movie), 0 (neutral rating or didn’t
watch the movie), or 1 (liked the movie).

Consider the ratings P1 = (�1, 0, 1, 0), P2 = (1, 1,�1, 0), P3 = (1, 1, 1, 0), P4 = (0,�1, 1, 0)

Which of P1, P2, P3 has movie preferences most similar to P4?

One approach to answer this question: use functions to quantify di↵erence among user preferences.

For example, consider the function d0 : {�1, 0, 1}4 ⇥ {�1, 0, 1}4 ! R given by

d0(((x1, x2, x3, x4), (y1, y2, y3, y4))) =
p

(x1 � y1)2 + (x2 � y2)2 + (x3 � y3)2 + (x4 � y4)2

CC BY-NC-SA 2.0 Version January 4, 2026 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

When the domain of a function is a recursively defined set, the rule assigning images to domain elements
(outputs) can also be defined recursively.

Recall: The set of RNA strands S is defined (recursively) by:

Basis Step: A 2 S, C 2 S, U 2 S, G 2 S

Recursive Step: If s 2 S and b 2 B, then sb 2 S

where sb is string concatenation.

Definition (Of a function, recursively) A function rnalen that computes the length of RNA strands in S

is defined by:

rnalen : S ! Z+

Basis Step: If b 2 B then rnalen(b) = 1
Recursive Step: If s 2 S and b 2 B, then rnalen(sb) = 1 + rnalen(s)

The domain of rnalen is

The codomain of rnalen is

Example function application:

rnalen(ACU) =

Example: A function basecount that computes the number of a given base b appearing in a RNA strand s

is defined recursively:

basecount : S ⇥ B ! N

Basis Step: If b1 2 B, b2 2 B basecount((b1, b2)) =

(
1 when b1 = b2

0 when b1 6= b2

Recursive Step: If s 2 S, b1 2 B, b2 2 B basecount((sb1, b2)) =

(
1 + basecount((s, b2)) when b1 = b2

basecount((s, b2)) when b1 6= b2

CC BY-NC-SA 2.0 Version January 4, 2026 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

