
Week2

Week 2 at a glance

We will be learning and practicing to:

• Model systems with tools from discrete mathematics and reason about implications of modelling
choices. Explore applications in CS through multiple perspectives, including software, hardware, and
theory.

– Selecting and representing appropriate data types and using notation conventions to clearly
communicate choices

– Determining the properties of positional number representations, including overflow and bit
operations

• Translate between di↵erent representations to illustrate a concept.

– Translating between symbolic and English versions of statements using precise mathematical
language

– Tracing algorithms specified in pseudocode

– Representing numbers using positional representations, including decimal, binary, hexadecimal,
fixed-width representations, and 2s complement

• Use precise notation to encode meaning and present arguments concisely and clearly

– Precisely describing a set using appropriate notation e.g. roster method, set builder notation,
and recursive definitions

– Defining functions using multiple representations

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems. Use mathematical techniques to solve problems. Determine appro-
priate conceptual tools to apply to new situations. Know when tools do not apply and try di↵erent
approaches. Critically analyze and evaluate candidate solutions.

– Using a recursive definition to evaluate a function or determine membership in a set

– Using the definitions of the div and mod operators on integers

TODO:

#FinAid Assignment on Canvas (complete as soon as possible)

Review quiz based on Week 1 class material (due Monday 01/12/2026)

Homework assignment 1 (due Thursday 01/15/2026)

Review quiz based on Week 2 class material (due Monday 01/19/2026)

CC BY-NC-SA 2.0 Version January 11, 2026 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 2 Monday: Sets, functions, and algorithms

Let’s practice with functions related to some of our applications so far.

Recall: We model the collection of user ratings of the four movies Superman, Wicked, KPop Demon Hunters,
A Minecraft Movie as the set {�1, 0, 1}4 . One function that compares pairs of ratings is

d0 : {�1, 0, 1}4 ⇥ {�1, 0, 1}4 ! R

given by

d0(((x1, x2, x3, x4), (y1, y2, y3, y4))) =
p

(x1 � y1)2 + (x2 � y2)2 + (x3 � y3)2 + (x4 � y4)2

Notice: any ordered pair of ratings is an okay input to d0.

Notice: there are (at most)
(3 · 3 · 3 · 3) · (3 · 3 · 3 · 3) = 38 = 6561

many pairs of ratings. There are therefore lots and lots of real numbers that are not the output of d0.

Recall: RNA is made up of strands of four di↵erent bases that encode genomic information in specific ways.
The bases are elements of the set B = {A, C, U, G}. The set of RNA strands S is defined (recursively) by:

Basis Step: A 2 S, C 2 S, U 2 S, G 2 S
Recursive Step: If s 2 S and b 2 B, then sb 2 S

where sb is string concatenation.

Pro-tip: informal definitions sometime use · · · to indicate “continue the pattern”. Often, to make this
pattern precise we use recursive definitions.

CC BY-NC-SA 2.0 Version January 11, 2026 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Name Domain Codomain Rule Example

rnalen S Z+

Basis Step:

If b 2 B then rnalen(b) = 1

Recursive Step:

If s 2 S and b 2 B, then

rnalen(sb) = 1 + rnalen(s)

rnalen(AC)
rec step
= 1 + rnalen(A)

basis step
= 1 + 1 = 2

basecount S ⇥ B N

Basis Step:

If b1 2 B, b2 2 B then

basecount((b1, b2)) =(
1 when b1 = b2
0 when b1 6= b2

Recursive Step:

If s 2 S, b1 2 B, b2 2 B

basecount((sb1, b2)) =(
1 + basecount((s, b2)) when b1 = b2
basecount((s, b2)) when b1 6= b2

basecount((ACU, C)) =

“2 to the
power
of”

N N

Basis Step:

20 = 1

Recursive Step:

If n 2 N, 2n+1 =

“b to the
power of
i”

Z+ ⇥ N N

Basis Step:

b0 = 1

Recursive Step:

If i 2 N, bi+1 = b · bi

20 = 1 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32 26 = 64 27 = 128 28 = 256 29 = 512 210 = 1024

CC BY-NC-SA 2.0 Version January 11, 2026 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Integer division and remainders (aka The Division Algorithm) Let n be an integer and d a positive
integer. There are unique integers q and r, with 0  r < d, such that n = dq + r. In this case, d is called
the divisor, n is called the dividend, q is called the quotient, and r is called the remainder.

Because these numbers are guaranteed to exist, the following functions are well-defined:

div : Z⇥ Z+ ! Z given by div ((n, d)) is the quotient when n is the dividend and d is the divisor.

mod : Z⇥Z+ ! Z given by mod ((n, d)) is the remainder when n is the dividend and d is the divisor.

Because these functions are so important, we sometimes use the notation n div d = div ((n, d)) and
n mod d = mod ((n, d)).

Pro-tip: The functions div and mod are similar to (but not exactly the same as) the operators / and
% in Java and python.

Example calculations:

20 div 4

20 mod 4

20 div 3

20 mod 3

�20 div 3

�20 mod 3

CC BY-NC-SA 2.0 Version January 11, 2026 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 2 Wednesday: Representing numbers

Modeling uses data-types that are encoded in a computer. The details of the encoding impact the e�ciency
of algorithms we use to understand the systems we are modeling and the impacts of these algorithms on
the people using the systems. Case study: how to encode numbers?

Definition For b an integer greater than 1 and n a positive integer, the base b expansion of n is

(ak�1 · · · a1a0)b

where k is a positive integer, a0, a1, . . . , ak�1 are (symbols for) nonnegative integers less than b, ak�1 6= 0,
and

n =
k�1X

i=0

aib
i

Notice: The base b expansion of a positive integer n is a string over the alphabet {x 2 N | x < b} whose
leftmost character is nonzero.

Base b Collection of possible coe�cients in base b expansion of a positive integer

Binary (b = 2) {0, 1}

Ternary (b = 3) {0, 1, 2}

Octal (b = 8) {0, 1, 2, 3, 4, 5, 6, 7}

Decimal (b = 10) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Hexadecimal (b = 16) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F}
letter coe�cient symbols represent numerical values (A)16 = (10)10

(B)16 = (11)10 (C)16 = (12)10 (D)16 = (13)10 (E)16 = (14)10 (F)16 = (15)10

CC BY-NC-SA 2.0 Version January 11, 2026 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Examples:

(1401)2

(1401)10

(1401)16

New! An algorithm is a finite sequence of precise instructions for solving a problem.

Algorithms can be expressed in English or in more formalized descriptions like pseudocode or fully executable
programs.

Sometimes, we can define algorithms whose output matches the rule for a function we already care about.
Consider the (integer) logarithm function

logb : {b 2 Z | b > 1}⇥ Z+ ! N

defined by
logb((b, n)) = greatest integer y so that by is less than or equal to n

Calculating integer part of base b logarithm
1 procedure logb(b ,n : p o s i t i v e i n t e g e r s with b > 1)
2 i := 0
3 while n > b� 1
4 i := i+ 1
5 n := n div b
6 return i {i holds the i n t e g e r part o f the base b l ogar i thm of n}

Trace this algorithm with inputs b = 3 and n = 17

b n i n > b� 1?
Initial value 3 17
After 1 iteration
After 2 iterations
After 3 iterations

Compare: does the output match the rule for the (integer) logarithm function?

CC BY-NC-SA 2.0 Version January 11, 2026 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Two algorithms for constructing base b expansion from decimal representation

Most significant first: Start with left-most coe�cient of expansion (highest value)

Informally: Build up to the value we need to represent in “greedy” approach, using units determined by
base.

Calculating base b expansion, from left
1 procedure basebmost(n, b : p o s i t i v e i n t e g e r s with b > 1)
2 v := n
3 k := 1+ output o f logb a lgor i thm with inputs b and n
4 for i := 1 to k
5 ak�i := 0
6 while v � bk�i

7 ak�i := ak�i + 1
8 v := v � bk�i

9 return (ak�1, . . . , a0){(ak�1 . . . a0)b is the base b expansion of n}

CC BY-NC-SA 2.0 Version January 11, 2026 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Least significant first: Start with right-most coe�cient of expansion (lowest value)

Idea: (when k > 1)

n = ak�1b
k�1 + · · ·+ a1b+ a0

= b(ak�1b
k�2 + · · ·+ a1) + a0

so a0 = n mod b and ak�1bk�2 + · · ·+ a1 = n div b.

Calculating base b expansion, from right
1 procedure basebleast(n, b : p o s i t i v e i n t e g e r s with b > 1)
2 k := 0
3 q := n
4 while q 6= 0
5 ak := q mod b
6 k := k + 1
7 q := q div b
8 return (ak�1, . . . , a0){(ak�1 . . . a0)b is the base b expansion of n}

CC BY-NC-SA 2.0 Version January 11, 2026 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 2 Friday: Algorithms for numbers

Find and fix any and all mistakes with the following:

(a) (1)2 = (1)8

(b) (142)10 = (142)16

(c) (20)10 = (10100)2

(d) (35)8 = (1D)16

Practice: write an algorithm for converting from base b1 expansion to base b2 expansion:

Definition For b an integer greater than 1, w a positive integer, and n a nonnegative integer ,
the base b fixed-width w expansion of n is

(aw�1 · · · a1a0)b,w

where a0, a1, . . . , aw�1 are nonnegative integers less than b and

n =
w�1X

i=0

aib
i

Decimal Binary Binary fixed-width 10 Binary fixed-width 7 Binary fixed-width 4
b = 10 b = 2 b = 2, w = 10 b = 2, w = 7 b = 2, w = 4

(20)10

CC BY-NC-SA 2.0 Version January 11, 2026 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition For b an integer greater than 1, w a positive integer, w0 a positive integer, and x a real number
the base b fixed-width expansion of x with integer part width w and fractional part width w0

is (aw�1 · · · a1a0.c1 · · · cw0)b,w,w0 where a0, a1, . . . , aw�1, c1, . . . , cw0 are nonnegative integers less than b and

x �
w�1X

i=0

aib
i +

w0X

j=1

cjb
�j and x <

w�1X

i=0

aib
i +

w0X

j=1

cjb
�j + b�w0

3.75 in fixed-width binary,
integer part width 2,
fractional part width 8

0.1 in fixed-width binary,
integer part width 2,
fractional part width 8

Note: Java uses floating point, not fixed width representation, but similar rounding errors appear in both.

CC BY-NC-SA 2.0 Version January 11, 2026 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Representing negative integers in binary: Fix a positive integer width for the representation w, w > 1.

To represent a positive integer n To represent a negative integer �n

S
ig
n
-m

ag
n
it
u
d
e [0aw�2 · · · a0]s,w, where n = (aw�2 · · · a0)2,w�1 [1aw�2 · · · a0]s,w , where n = (aw�2 · · · a0)2,w�1

Example n = 17, w = 7: Example �n = �17, w = 7:

2s
co
m
p
le
m
en
t [0aw�2 · · · a0]2c,w, where n = (aw�2 · · · a0)2,w�1 [1aw�2 · · · a0]2c,w, where 2w�1�n = (aw�2 · · · a0)2,w�1

Example n = 17, w = 7: Example �n = �17, w = 7:

For positive integer n, to represent �n in 2s complement with width w,

• Calculate 2w�1 � n, convert result to binary fixed-width w � 1, pad with leading 1, or

• Express �n as a sum of powers of 2, where the leftmost 2w�1 is negative weight, or

• Convert n to binary fixed-width w, flip bits, add 1 (ignore overflow)

Challenge: use definitions to explain why each of these approaches works.

CC BY-NC-SA 2.0 Version January 11, 2026 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Representing 0:

So far, we have representations for positive and negative integers. What about 0?

To represent a non-negative integer n To represent a non-positive integer �n

S
ig
n
-m

ag
n
it
u
d
e [0aw�2 · · · a0]s,w, where n = (aw�2 · · · a0)2,w�1 [1aw�2 · · · a0]s,w , where n = (aw�2 · · · a0)2,w�1

Example n = 0, w = 7: Example �n = 0, w = 7:

2s
co
m
p
le
m
en
t [0aw�2 · · · a0]2c,w, where n = (aw�2 · · · a0)2,w�1 [1aw�2 · · · a0]2c,w, where 2w�1�n = (aw�2 · · · a0)2,w�1

Example n = 0, w = 7: Example �n = 0, w = 7:

CC BY-NC-SA 2.0 Version January 11, 2026 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

