

Week3

Week 3 at a glance

We will be learning and practicing to:

• Model systems with tools from discrete mathematics and reason about implications of modelling

choices. Explore applications in CS through multiple perspectives, including software, hardware, and

theory.

– Determining the properties of positional number representations, including overflow and bit

operations

– Connecting logical circuits and compound proposition and tracing to calcluate output values

• Translate between di↵erent representations to illustrate a concept.

– Translating between symbolic and English versions of statements using precise mathematical

language

• Use precise notation to encode meaning and present arguments concisely and clearly

– Listing the truth tables of atomic boolean functions (and, or, xor, not, if, i↵)

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason

about computation and systems. Use mathematical techniques to solve problems. Determine appro-

priate conceptual tools to apply to new situations. Know when tools do not apply and try di↵erent

approaches. Critically analyze and evaluate candidate solutions.

– Evaluating compound propositions

– Judging logical equivalence of compound propositions using symbolic manipulation with known

equivalences, including DeMorgan’s Law

– Judging logical equivalence of compound propositions using truth tables

– Rewriting compound propositions using normal forms

– Judging whether a collection of propositions is consistent

TODO:

Review quiz based on Week 2 class material (extended because signed number representations weren’t

covered until Week 3; now due Monday 01/26/2026)

Review quiz based on Week 3 class material (due Monday 01/26/2026)

CC BY-NC-SA 2.0 Version January 17, 2026 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 3 Wednesday: Fixed-width Addition and Circuits

Fixed-width addition: adding one bit at time, using the usual column-by-column and carry arithmetic,

and dropping the carry from the leftmost column so the result is the same width as the summands. Does
this give the right value for the sum?

[0 1 0 1]s,4

+[1 1 0 1]s,4

[0 1 0 1]2c,4

+[1 0 1 1]2c,4

(1 1 0 1 0 0)2,6

+(0 0 0 1 0 1)2,6

[1 1 0 1 0 0]s,6

+[0 0 0 1 0 1]s,6

[1 1 0 1 0 0]2c,6

+[0 0 0 1 0 1]2c,6

CC BY-NC-SA 2.0 Version January 17, 2026 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

In a combinatorial circuit (also known as a logic circuit), we have logic gates connected by wires.

The inputs to the circuits are the values set on the input wires: possible values are 0 (low) or 1 (high). The

values flow along the wires from left to right. A wire may be split into two or more wires, indicated with a

filled-in circle (representing solder). Values stay the same along a wire. When one or more wires flow into a

gate, the output value of that gate is computed from the input values based on the gate’s definition table.

Outputs of gates may become inputs to other gates.

Inputs Output

x y x AND y
1 1 1

1 0 0

0 1 0

0 0 0

Inputs Output

x y x XOR y
1 1 0

1 0 1

0 1 1

0 0 0

Input Output

x NOT x
1 0

0 1

Example digital circuit:

Output when x = 1, y = 0, z = 0, w = 1 is

Output when x = 1, y = 1, z = 1, w = 1 is

Output when x = 0, y = 0, z = 0, w = 1 is

Draw a logic circuit with inputs x and y whose output is always 0. Can you use exactly 1 gate?

CC BY-NC-SA 2.0 Version January 17, 2026 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Fixed-width addition: adding one bit at time, using the usual column-by-column and carry arithmetic,

and dropping the carry from the leftmost column so the result is the same width as the summands. In

many cases, this gives representation of the correct value for the sum when we interpret the summands in

fixed-width binary or in 2s complement.

For single column:

Input Output

x0 y0 c0 s0
1 1

1 0

0 1

0 0

Draw a logic circuit that implements binary addition of two numbers that are each represented in fixed-width

binary:

• Inputs x0, y0, x1, y1 represent (x1x0)2,2 and (y1y0)2,2

• Outputs z0, z1, z2 represent (z2z1z0)2,3 = (x1x0)2,2 + (y1y0)2,2 (may require up to width 3)

First approach: half-adder for each column, then combine carry from right column with sum of left column

Write expressions for the circuit output values in terms of input values:

z0 =

z1 =

z2 =

There are other approaches, for example: for middle column, first add carry from right column to x1, then

add result to y1

CC BY-NC-SA 2.0 Version January 17, 2026 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 3 Friday: Propositional Logic and Logical Equivalence

Logical operators aka propositional connectives

Conjunction AND ^ \land 2 inputs Evaluates to T exactly when both inputs are T
Exclusive or XOR � \oplus 2 inputs Evaluates to T exactly when exactly one of inputs is T
Disjunction OR _ \lor 2 inputs Evaluates to T exactly when at least one of inputs is T
Negation NOT ¬ \lnot 1 input Evaluates to T exactly when its input is F

Truth tables: Input-output tables where we use T for 1 and F for 0.

Input Output

Conjunction Exclusive or Disjunction

p q p ^ q p� q p _ q
T T T F T
T F F T T
F T F T T
F F F F F

Input Output

Negation

p ¬p
T F
F T

Input Output

p q r (p ^ q)� ((p� q) ^ r) (p ^ q) _ ((p� q) ^ r)

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

CC BY-NC-SA 2.0 Version January 17, 2026 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Given a truth table, how do we find an expression using the input variables and logical operators that has

the output values specified in this table?

Application: design a circuit given a desired input-output relationship.

Input Output

p q mystery1 mystery2
T T T F
T F T F
F T F F
F F T T

Expressions that have output mystery1 are

Expressions that have output mystery2 are

Idea: To develop an algorithm for translating truth tables to expressions, define a convenient normal form

for expressions.

Definition An expression built of variables and logical operators is in disjunctive normal form (DNF)

means that it is an OR of ANDs of variables and their negations.

Definition An expression built of variables and logical operators is in conjunctive normal form (CNF)

means that it is an AND of ORs of variables and their negations.

CC BY-NC-SA 2.0 Version January 17, 2026 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Proposition: Declarative sentence that is true or false (not both).

Propositional variable: Variable that represents a proposition.

Compound proposition: New proposition formed from existing propositions (potentially) using logical

operators. Note: A propositional variable is one example of a compound proposition.

Truth table: Table with one row for each of the possible combinations of truth values of the input and an

additional column that shows the truth value of the result of the operation corresponding to a particular

row.

Logical equivalence : Two compound propositions are logically equivalent means that they have the

same truth values for all settings of truth values to their propositional variables.

Tautology: A compound proposition that evaluates to true for all settings of truth values to its proposi-

tional variables; it is abbreviated T .

Contradiction: A compound proposition that evaluates to false for all settings of truth values to its

propositional variables; it is abbreviated F .

Contingency: A compound proposition that is neither a tautology nor a contradiction.

Label each of the following as a tautology, contradiction, or contingency.

p ^ p

p� p

p _ p

p _ ¬p

p ^ ¬p

Extra Example: Which of the compound propositions in the table below are logically equivalent?

Input Output

p q ¬(p ^ ¬q) ¬(¬p _ ¬q) (¬p _ q) (¬q _ ¬p) (p ^ q)
T T
T F
F T
F F

CC BY-NC-SA 2.0 Version January 17, 2026 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

