
Week4

Week 4 at a glance

We will be learning and practicing to:

• Translate between di↵erent representations to illustrate a concept.

– Translating between symbolic and English versions of statements using precise mathematical
language

– Translating between truth tables (tables of values) and compound propositions

• Use precise notation to encode meaning and present arguments concisely and clearly

– Listing the truth tables of atomic boolean functions (and, or, xor, not, if, i↵)

– Defining functions, predicates, and binary relations using multiple representations

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems. Use mathematical techniques to solve problems. Determine appro-
priate conceptual tools to apply to new situations. Know when tools do not apply and try di↵erent
approaches. Critically analyze and evaluate candidate solutions.

– Evaluating compound propositions

– Judging logical equivalence of compound propositions using symbolic manipulation with known
equivalences, including DeMorgan’s Law

– Writing the converse, contrapositive, and inverse of a given conditional statement

– Determining what evidence is required to establish that a quantified statement is true or false

– Evaluating quantified statements about finite and infinite domains

TODO:

Schedule your Test 1 Attempt 1, Test 2 Attempt 1 times at PrairieTest (http://us.prairietest.com)

You must present a physical university-issued or government-issued ID. Copies, photos, or digital
IDs are not accepted, and students without verifiable ID will not be permitted to test.

•• Pockets must be empty upon entry. Students may bring only their ID and a pen or pencil into
the testing center.

Review quizzes based on Week 2 and Week 3 class material (due Monday 01/26/2026)

Homework 2 due on Gradescope https://www.gradescope.com/ (Thursday 01/29/2026)

Start reviewing for Test 1: Test1 Attempt 1 is next week. The test covers material in Weeks 1
through Week 5, corresponding to RQ1, RQ2, RQ3, and RQ4. To study for the exam, we recommend
reviewing class notes (e.g. annotations linked on the class website, supplementary videos from the
class website) and working multiple variants of review quiz questions. You could also find that review-
ing homework (and its posted sample solutions)and extra examples (in lecture notes and discussion
examples) and getting feedback (o�ce hours and Piazza) is helpful.

CC BY-NC-SA 2.0 Version January 26, 2026 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 4 Monday: Logical Equivalence and Conditionals

(Some) logical equivalences

Can replace p and q with any compound proposition

¬(¬p) ⌘ p Double negation

p _ q ⌘ q _ p p ^ q ⌘ q ^ p Commutativity Ordering of terms

(p _ q) _ r ⌘ p _ (q _ r) (p ^ q) ^ r ⌘ p ^ (q ^ r) Associativity Grouping of terms

p ^ F ⌘ F p _ T ⌘ T p ^ T ⌘ p p _ F ⌘ p Domination aka short circuit evaluation

¬(p ^ q) ⌘ ¬p _ ¬q ¬(p _ q) ⌘ ¬p ^ ¬q DeMorgan’s Laws

CC BY-NC-SA 2.0 Version January 26, 2026 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Input Output
Conjunction Exclusive or Disjunction Conditional Biconditional

p q p ^ q p� q p _ q p ! q p $ q

T T T F T T T

T F F T T F F

F T F T T T F

F F F F F T T

“p and q” “p xor q” “p or q” “if p then q” “p if and only if q”

The only way to make the conditional statement p ! q false is to

The hypothesis of p ! q is The antecedent of p ! q is

The conclusion of p ! q is The consequent of p ! q is

The converse of p ! q is

The inverse of p ! q is

The contrapositive of p ! q is

We can use a recursive definition to describe all compound propositions that use propositional variables
from a specified collection. Here’s the definition for all compound propositions whose propositional variables
are in {p, q}.

Basis Step: p and q are each a compound proposition
Recursive Step: If x is a compound proposition then so is (¬x) and if

x and y are both compound propositions then so is each of
(x ^ y), (x� y), (x _ y), (x ! y), (x $ y)

Order of operations (Precedence) for logical operators:

Negation, then conjunction / disjunction, then conditional / biconditionals.

Example: ¬p _ ¬q means (¬p) _ (¬q).

CC BY-NC-SA 2.0 Version January 26, 2026 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

(Some) logical equivalences

p ! q ⌘ ¬p _ q

p ! q ⌘ ¬q ! ¬p Contrapositive

¬(p ! q) ⌘ p ^ ¬q

¬(p $ q) ⌘ p� q

p $ q ⌘ q $ p

Extra examples:

p $ q is not logically equivalent to p ^ q because

p ! q is not logically equivalent to q ! p because

CC BY-NC-SA 2.0 Version January 26, 2026 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Common ways to express logical operators in English:

Negation ¬p can be said in English as

• Not p.

• It’s not the case that p.

• p is false.

Conjunction p ^ q can be said in English as

• p and q.

• Both p and q are true.

• p but q.

Exclusive or p� q can be said in English as

• p or q, but not both.

• Exactly one of p and q is true.

Disjunction p _ q can be said in English as

• p or q, or both.

• p or q (inclusive).

• At least one of p and q is true.

Conditional p ! q can be said in English as

• if p, then q.

• p is su�cient for q.

• q when p.

• q whenever p.

• p implies q.

• q follows from p.

• q is necessary for p.

• p only if q.

Biconditional

• p if and only if q.

• p i↵ q.

• If p then q, and conversely.

• p is necessary and su�cient for q.

CC BY-NC-SA 2.0 Version January 26, 2026 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 4 Wednesday: Translation, Predicates, and Quantifiers

Translation: Express each of the following sentences as compound propositions, using the given proposi-
tions.

“A su�cient condition for the warranty to be good is
that you bought the computer less than a year ago”

w is “the warranty is good”

b is “you bought the computer less than a year ago”

“Whenever the message was sent from an unknown
system, it is scanned for viruses.”

s is “The message is scanned for viruses”

u is “The message was sent from an unknown system”

“I will complete my to-do list only if I put a reminder
in my calendar”

d is “I will complete my to-do list”

c is “I put a reminder in my calendar”

CC BY-NC-SA 2.0 Version January 26, 2026 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: A collection of compound propositions is called consistent if there is an assignment of truth
values to the propositional variables that makes each of the compound propositions true.

Consistency:

Whenever the system software is being upgraded, users cannot access the file system. If users
can access the file system, then they can save new files. If users cannot save new files, then the
system software is not being upgraded.

1. Translate to symbolic compound propositions

2. Look for some truth assignment to the propositional variables for which all the compound propositions
output T

CC BY-NC-SA 2.0 Version January 26, 2026 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: A predicate is a function from a given set (domain) to {T, F}.

A predicate can be applied, or evaluated at, an element of the domain.

Usually, a predicate describes a property that domain elements may or may not have.

Two predicates over the same domain are equivalent means they evaluate to the same truth values for all
possible assignments of domain elements to the input. In other words, they are equivalent means that they
are equal as functions.

To define a predicate, we must specify its domain and its value at each domain element. The rule assigning
truth values to domain elements can be specified using a formula, English description, in a table (if the
domain is finite), or recursively (if the domain is recursively defined).

Input Output
V (x) N(x) Mystery(x)

x [x]2c,3 > 0 [x]2c,3 < 0
000 F T

001 T T

010 T T

011 T F

100 F F

101 F T

110 F F

111 F T

The domain for each of the predicates V (x), N(x),Mystery(x) is .

Fill in the table of values for the predicate N(x) based on the formula given.

Definition: The truth set of a predicate is the collection of all elements in its domain where the predicate
evaluates to T .

Notice that specifying the domain and the truth set is su�cient for defining a predicate.

The truth set for the predicate V (x) is .

The truth set for the predicate N(x) is .

The truth set for the predicate Mystery(x) is .

CC BY-NC-SA 2.0 Version January 26, 2026 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The universal quantification of predicate P (x) over domain U is the statement “P (x) for all values of x in
the domain U” and is written 8xP (x) or 8x 2 U P (x). When the domain is finite, universal quantification
over the domain is equivalent to iterated conjunction (ands).

The existential quantification of predicate P (x) over domain U is the statement “There exists an element
x in the domain U such that P (x)” and is written 9xP (x) for 9x 2 U P (x). When the domain is finite,
existential quantification over the domain is equivalent to iterated disjunction (ors).

An element for which P (x) = F is called a counterexample of 8xP (x).

An element for which P (x) = T is called a witness of 9xP (x).

Statements involving predicates and quantifiers are logically equivalent means they have the same truth
value no matter which predicates (domains and functions) are substituted in.

Quantifier version of De Morgan’s laws: ¬8xP (x) ⌘ 9x (¬P (x)) ¬9xQ(x) ⌘ 8x (¬Q(x))

Examples of quantifications using V (x), N(x),Mystery(x):

True or False: 9x (V (x) ^N(x))

True or False: 8x (V (x) ! N(x))

True or False: 9x (N(x) $ Mystery(x))

Rewrite ¬8x (V (x)�Mystery(x)) into a logical equivalent statement.

Notice that these are examples where the predicates have finite domain. How would we evaluate quantifi-
cations where the domain may be infinite?

CC BY-NC-SA 2.0 Version January 26, 2026 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 4 Friday: Evaluating Nested Quantifiers

Recall the definitions: The set of RNA strands S is defined (recursively) by:

Basis Step: A 2 S, C 2 S, U 2 S, G 2 S

Recursive Step: If s 2 S and b 2 B, then sb 2 S

where sb is string concatenation.

The function rnalen that computes the length of RNA strands in S is defined recursively by:

rnalen : S ! Z+

Basis Step: If b 2 B then rnalen(b) = 1
Recursive Step: If s 2 S and b 2 B, then rnalen(sb) = 1 + rnalen(s)

The function basecount that computes the number of a given base b appearing in a RNA strand s is defined
recursively by:

basecount : S ⇥ B ! N

Basis Step: If b1 2 B, b2 2 B basecount((b1, b2)) =

(
1 when b1 = b2

0 when b1 6= b2

Recursive Step: If s 2 S, b1 2 B, b2 2 B basecount((sb1, b2)) =

(
1 + basecount((s, b2)) when b1 = b2

basecount((s, b2)) when b1 6= b2

Example predicates on S, the set of RNA strands (an infinite set)

H : S ! {T, F} where H(s) = T for all s.

Truth set of H is

LA : S ! {T, F} defined recursively by:

Basis step: LA(A) = T , LA(C) = LA(G) = LA(U) = F

Recursive step: If s 2 S and b 2 B, then LA(sb) = LA(s).

Example where LA evaluates to T is

Example where LA evaluates to F is

CC BY-NC-SA 2.0 Version January 26, 2026 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Using functions to define predicates:

L with domain S ⇥ Z+ is defined by, for s 2 S and n 2 Z+,

L((s, n)) =

(
T if rnalen(s) = n

F otherwise

In other words, L((s, n)) means rnalen(s) = n

BC with domain S ⇥ B ⇥ N is defined by, for s 2 S and b 2 B and n 2 N,

BC((s, b, n)) =

(
T if basecount((s, b)) = n

F otherwise

In other words, BC((s, b, n)) means basecount((s, b)) = n

Example where L evaluates to T : Why?

Example where BC evaluates to T : Why?

Example where L evaluates to F : Why?

Example where BC evaluates to F : Why?

9t BC(t) 9(s, b, n) 2 S ⇥ B ⇥ N (basecount((s, b)) = n)

In English:

Witness that proves this existential quantification is true:

8t BC(t) 8(s, b, n) 2 S ⇥ B ⇥ N (basecount((s, b)) = n)

In English:

Counterexample that proves this universal quantification is false:

CC BY-NC-SA 2.0 Version January 26, 2026 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

New predicates from old

1. Define the new predicate with domain S ⇥ B and rule

basecount((s, b)) = 3

Example domain element where predicate is T :

2. Define the new predicate with domain S ⇥ N and rule

basecount((s, A)) = n

Example domain element where predicate is T :

3. Define the new predicate with domain S ⇥ B and rule

9n 2 N (basecount((s, b)) = n)

Example domain element where predicate is T :

4. Define the new predicate with domain S and rule

8b 2 B (basecount((s, b)) = 1)

Example domain element where predicate is T :

Notation: for a predicate P with domain X1 ⇥ · · ·⇥Xn and a n-tuple (x1, . . . , xn) with each xi 2 X, we
can write P (x1, . . . , xn) to mean P ((x1, . . . , xn)).

Nested quantifiers

8s 2 S 8b 2 B 8n 2 N (basecount((s, b)) = n)

In English:

Counterexample that proves this universal quantification is false:

8n 2 N 8s 2 S 8b 2 B (basecount((s, b)) = n)

In English:

Counterexample that proves this universal quantification is false:

CC BY-NC-SA 2.0 Version January 26, 2026 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Alternating nested quantifiers

8s 2 S 9b 2 B (basecount((s, b)) = 3)

In English: For each RNA strand there is a base that occurs 3 times in this strand.

Write the negation and use De Morgan’s law to find a logically equivalent version where the negation is
applied only to the BC predicate (not next to a quantifier).

Is the original statement True or False?

9s 2 S 8b 2 B 9n 2 N (basecount((s, b)) = n)

In English: There is an RNA strand so that for each base there is some nonnegative integer that counts
the number of occurrences of that base in this strand.

Write the negation and use De Morgan’s law to find a logically equivalent version where the negation is
applied only to the BC predicate (not next to a quantifier).

Is the original statement True or False?

CC BY-NC-SA 2.0 Version January 26, 2026 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

