
Week6

Week 6 at a glance

We will be learning and practicing to:

• Clearly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

– Translating between symbolic and English versions of statements using precise mathematical
language

– Using appropriate signpost words to improve readability of proofs, including ‘arbitrary’ and
‘assume’

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems. Use mathematical techniques to solve problems. Determine appro-
priate conceptual tools to apply to new situations. Know when tools do not apply and try di!erent
approaches. Critically analyze and evaluate candidate solutions.

– Judging logical equivalence of compound propositions using symbolic manipulation with known
equivalences, including DeMorgan’s Law

– Writing the converse, contrapositive, and inverse of a given conditional statement

– Determining what evidence is required to establish that a quantified statement is true or false

– Evaluating quantified statements about finite and infinite domains

• Apply proof strategies, including direct proofs and proofs by contradiction, and determine whether a
proposed argument is valid or not.

– Identifying the proof strategies used in a given proof

– Identifying which proof strategies are applicable to prove a given compound proposition based
on its logical structure

– Carrying out a given proof strategy to prove a given statement

– Carrying out a universal generalization argument to prove that a universal statement is true

– Using proofs as knowledge discovery tools to decide whether a statement is true or false

TODO:

Review quiz based on Week 5 class material (due Monday 02/09/2026)

Midquarter feedback: please let us know what’s working well for you and what isn’t. https://
canvas.ucsd.edu/courses/71479/quizzes

Homework 3 due on Gradescope https://www.gradescope.com/ (Thursday 02/12/2026)

Review quiz based on Week 6 class material (due Monday 02/16/2026)

No class Monday of Week 7 (02/16/2026) in observance of UCSD holiday.

CC BY-NC-SA 2.0 Version February 7, 2026 (1)

https://canvas.ucsd.edu/courses/71479/quizzes
https://canvas.ucsd.edu/courses/71479/quizzes
https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 6 Monday: Proofs for properties of sets and numbers

Facts about numbers

We now have propositional and predicate logic that can help us express statements about any domain. We
will develop proof strategies to craft valid argument for proving that such statements are true or disproving
them (by showing they are false). We will practice these strategies with statements about sets and numbers,
both because they are familiar and because they can be used to build cryptographic systems. Then we
will apply proof strategies more broadly to prove statements about data structures and machine learning
applications.

1. Addition and multiplication of real numbers are each commutative and associative.

2. The product of two positive numbers is positive, of two negative numbers is positive, and of a positive
and a negative number is negative.

3. The sum of two integers, the product of two integers, and the di!erence between two integers are each
integers.

4. For every integer x there is no integer strictly between x and x+ 1,

5. When x, y are positive integers, xy → x and xy → y.

Factoring

Definition: When a and b are integers and a is nonzero, a divides b means there is an integer c such that
b = ac .

Symbolically, F ((a, b)) = and is a predicate over the domain

Other (synonymous) ways to say that F ((a, b)) is true:

a is a factor of b a is a divisor of b b is a multiple of a a|b

When a is a positive integer and b is any integer, a|b exactly when b mod a = 0

When a is a positive integer and b is any integer, a|b exactly when b = a · (b div a)

CC BY-NC-SA 2.0 Version February 7, 2026 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Translate these quantified statements by matching to English statement on right.

↑a ↓ Z →=0 (F ((a, a)))

↑a ↓ Z →=0 (¬F ((a, a)))

↔a ↓ Z →=0 (F ((a, a)))

↔a ↓ Z →=0 (¬F ((a, a)))

Every nonzero integer is a factor of itself.

No nonzero integer is a factor of itself.

At least one nonzero integer is a factor of itself.

Some nonzero integer is not a factor of itself.

Claim: Every nonzero integer is a factor of itself.

Proof:

Prove or Disprove: There is a nonzero integer that does not divide its square.

Prove or Disprove: Every positive factor of a positive integer is less than or equal to it.

Claim: Every nonzero integer is a factor of itself and every nonzero integer divides its square.

CC BY-NC-SA 2.0 Version February 7, 2026 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: an integer n is even means that there is an integer a such that n = 2a; an integer n is
odd means that there is an integer a such that n = 2a + 1. Equivalently, an integer n is even means
n mod 2 = 0; an integer n is odd means n mod 2 = 1. Also, an integer is even if and only if it is not
odd.

Definition: An integer p greater than 1 is called prime means the only positive factors of p are 1 and p.
A positive integer that is greater than 1 and is not prime is called composite.

Extra examples: Use the definition to prove that 1 is not prime, 2 is prime, 3 is prime, 4 is not prime, 5 is
prime, 6 is not prime, and 7 is prime.

True or False: The statement “There are three consecutive positive integers that are prime.”

Hint: These numbers would be of the form p, p+ 1, p+ 2 (where p is a positive integer).

Proof: We need to show

True or False: The statement “There are three consecutive odd positive integers that are prime.”

Hint: These numbers would be of the form p, p+ 2, p+ 4 (where p is an odd positive integer).

Proof: We need to show

CC BY-NC-SA 2.0 Version February 7, 2026 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Pre-class reading for Week 6 Wednesday

At this point, we’ve seen the proof strategies

• A counterexample to prove that ↔xP (x) is
false.

• A witness to prove that ↑xP (x) is true.

• Proof of universal by exhaustion to prove
that ↔xP (x) is true when P has a finite domain

• Proof by universal generalization to prove
that ↔xP (x) is true using an arbitrary element
of the domain.

• To prove that ↑xP (x) is false, write the univer-
sal statement that is logically equivalent to its
negation and then prove it true using universal
generalization.

• To prove that p ↗ q is true, have two subgoals:
subgoal (1) prove p is true; and, subgoal (2)
prove q is true. To prove that p↗ q is false, it’s
enough to prove that p is false. To prove that
p↗q is false, it’s enough to prove that q is false.

• Proof of conditional by direct proof

• Proof of conditional by contrapositive proof

• Proof of disjuction using equivalent condi-
tional: To prove that the disjunction p ↘ q is
true, we can rewrite it equivalently as ¬p ≃ q

and then use direct proof or contrapositive
proof.

• Proof by cases.

Recall the definitions: The set of RNA strands S is defined (recursively) by:

Basis Step: A ↓ S, C ↓ S, U ↓ S, G ↓ S

Recursive Step: If s ↓ S and b ↓ B, then sb ↓ S

where sb is string concatenation.

The function rnalen that computes the length of RNA strands in S is defined recursively by:

rnalen : S ≃ Z+

Basis Step: If b ↓ B then rnalen(b) = 1
Recursive Step: If s ↓ S and b ↓ B, then rnalen(sb) = 1 + rnalen(s)

The function basecount that computes the number of a given base b appearing in a RNA strand s is defined
recursively by:

basecount : S ⇐B ≃ N

Basis Step: If b1 ↓ B, b2 ↓ B basecount((b1, b2)) =

{
1 when b1 = b2

0 when b1 ⇒= b2

Recursive Step: If s ↓ S, b1 ↓ B, b2 ↓ B basecount((sb1, b2)) =

{
1 + basecount((s, b2)) when b1 = b2

basecount((s, b2)) when b1 ⇒= b2

CC BY-NC-SA 2.0 Version February 7, 2026 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Which proof strategies could be used to prove each of the following statements?

Hint: first translate the statements to English and identify the main logical structure.

↔b ↓ B ↑s ↓ S (basecount((s, b)) > 0)

↑s ↓ S ↔b ↓ B (basecount((s, b)) > 0)

↑s ↓ S (rnalen(s) = basecount((s, A))

↔s ↓ S ↑b ↓ B (basecount((s, b)) > 0)

↔s ↓ S (rnalen(s) → basecount((s, A)))

↔s ↓ S (rnalen(s) > 0)

CC BY-NC-SA 2.0 Version February 7, 2026 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 6 Wednesday: Structural Induction

Claim ↔s ↓ S (rnalen(s) > 0)

Proof: Let s be an arbitrary RNA strand. By the recursive definition of S, either s ↓ B or there is some
strand s0 and some base b such that s = s0b. We will show that the inequality holds for both cases.

Case: Assume s ↓ B. We need to show rnalen(s) > 0. By the basis step in the definition of rnalen,

rnalen(s) = 1

which is greater than 0, as required.

Case: Assume there is some strand s0 and some base b such that s = s0b. We will show (the

stronger claim) that
↔u ↓ S ↔b ↓ B (rnalen(u) > 0 ≃ rnalen(ub) > 0)

Consider an arbitrary RNA strand u and an arbitrary base b, and assume towards a direct proof,
that

rnalen(u) > 0

We need to show that rnalen(ub) > 0.

rnalen(ub) = 1 + rnalen(u) > 1 + 0 = 1 > 0

as required.

Proof by Structural Induction To prove a universal quantification over a recursively defined set:

Basis Step: Show the statement holds for elements specified in the basis step of the definition.

Recursive Step: Show that if the statement is true for each of the elements used to construct new
elements in the recursive step of the definition, the result holds for these new elements.

CC BY-NC-SA 2.0 Version February 7, 2026 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim ↔s ↓ S (rnalen(s) → basecount((s, A))):

Proof: We proceed by structural induction on the recursively defined set S.

Basis Case: We need to prove that the inequality holds for each element in the basis step of the recursive
definition of S. Need to show

(rnalen(A) → basecount((A, A))) ↗ (rnalen(C) → basecount((C, A)))

↗(rnalen(U) → basecount((U, A))) ↗ (rnalen(G) → basecount((G, A)))

We calculate, using the definitions of rnalen and basecount:

Recursive Case: We will prove that

↔u ↓ S ↔b ↓ B (rnalen(u) → basecount((u, A)) ≃ rnalen(ub) → basecount((ub, A))

Consider arbitrary RNA strand u and arbitrary base b. Assume, as the induction hypothesis, that
rnalen(u) → basecount((u, A)). We need to show that rnalen(ub) → basecount((ub, A)).

Using the recursive step in the definition of the function rnalen:

rnalen(ub) = 1 + rnalen(u)

The recursive step in the definition of the function basecount has two cases. We notice that b = A ↘ b ⇒= A
and we proceed by cases.

Case i. Assume b = A.

Using the first case in the recursive step in the definition of the function basecount:

basecount((ub, A)) = 1 + basecount((u, A))

By the induction hypothesis, we know that basecount((u, A)) ⇑ rnalen(u) so:

basecount((ub, A)) = 1 + basecount((u, A)) ⇑ 1 + rnalen(u) = rnalen(ub)

and, thus, basecount((ub, A)) ⇑ rnalen(ub), as required.

Case ii. Assume b ⇒= A.

Using the second case in the recursive step in the definition of the function basecount:

basecount((ub, A)) = basecount((u, A))

By the induction hypothesis, we know that basecount((u, A)) ⇑ rnalen(u) so:

basecount((ub, A)) = basecount((u, A)) ⇑ rnalen(u) < 1 + rnalen(u) = rnalen(ub)

and, thus, basecount((ub, A)) ⇑ rnalen(ub), as required.

CC BY-NC-SA 2.0 Version February 7, 2026 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

To organize our proofs, it’s useful to highlight which claims are most important for our overall goals. We
use some terminology to describe di!erent roles statements can have.

Theorem: Statement that can be shown to be true, usually an important one.

Less important theorems can be called proposition, fact, result, claim.

Lemma: A less important theorem that is useful in proving a theorem.

Corollary: A theorem that can be proved directly after another one has been proved, without needing a
lot of extra work.

Invariant: A theorem that describes a property that is true about an algorithm or system no matter what
inputs are used.

Theorem: A robot on an infinite 2-dimensional integer grid starts at (0, 0) and at each step moves to
diagonally adjacent grid point. This robot can / cannot (circle one) reach (1, 0).

Definition The set of positions the robot can visit Pos is defined by:

Basis Step: (0, 0) ↓ Pos

Recursive Step: If (x, y) ↓ Pos, then
are also in Pos

Example elements of Pos are:

CC BY-NC-SA 2.0 Version February 7, 2026 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Lemma: ↔(x, y) ↓ Pos (x+ y is an even integer)

Why are we calling this a lemma?

Proof of theorem using lemma: To show is (1, 0) /↓ Pos. Rewriting the lemma to explicitly restrict the
domain of the universal, we have ↔(x, y) ((x, y) ↓ Pos ≃ (x+y is an even integer)). Since the universal
is true, ((1, 0) ↓ Pos ≃ (1 + 0 is an even integer)) is a true statement. Evaluating the conclusion of
this conditional statement: By definition of long division, since 1 = 0 · 2 + 1 (where 0 ↓ Z and 1 ↓ Z and
0 ⇑ 1 < 2 mean that 0 is the quotient and 1 is the remainder), 1 mod 2 = 1 which is not 0 so the conclusion
is false. A true conditional with a false conclusion must have a false hypothesis: (1, 0) /↓ Pos, QED. ↭

Proof of lemma by structural induction:

Basis Step:

Recursive Step: Consider arbitrary (x, y) ↓ Pos. To show is:

(x+ y is an even integer) ≃ (sum of coordinates of next position is even integer)

Assume as the induction hypothesis, IH that:

CC BY-NC-SA 2.0 Version February 7, 2026 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 6 Friday: Mathematical and Strong Induction

Proof by Mathematical Induction
To prove a universal quantification over the set of all integers greater than or equal to some base integer b,

Basis Step: Show the property holds for b.

Recursive Step: Consider an arbitrary integer n greater than or equal to b, assume (as the induction
hypothesis) that the property holds for n, and use this and other facts to prove that the property
holds for n+ 1.

The set N is recursively defined. Therefore, the function sumPow : N ≃ N which computes, for input i,
the sum of the nonnegative powers of 2 up to and including exponent i is defined recursively by

Basis step: sumPow(0) = 1

Recursive step: If x ↓ N, then sumPow(x+ 1) = sumPow(x) + 2x+1

sumPow(0) =

sumPow(1) =

sumPow(2) =

Fill in the blanks in the following proof of

↔n ↓ N (sumPow(n) = 2n+1 ⇓ 1)

Proof: Since N is recursively defined, we proceed by .

Basis case: We need to show that . Evaluating each side: LHS = sumPow(0) =
1 by the basis case in the recursive definition of sumPow; RHS = 20+1 ⇓ 1 = 21 ⇓ 1 = 2 ⇓ 1 = 1. Since
1 = 1, the equality holds.

Recursive case: Consider arbitrary natural number n and assume, as the that

sumPow(n) = 2n+1 ⇓ 1. We need to show that . Evaluating each side:

LHS = sumPow(n+ 1)
rec def
= sumPow(n) + 2n+1 IH

= (2n+1 ⇓ 1) + 2n+1
.

RHS = 2(n+1)+1 ⇓ 1
exponent rules

= 2 · 2n+1 ⇓ 1 =
(
2n+1 + 2n+1

)
⇓ 1

regrouping

= (2n+1 ⇓ 1) + 2n+1

Thus, LHS = RHS. The structural induction is complete and we have proved the universal generalization.
↭

CC BY-NC-SA 2.0 Version February 7, 2026 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Proof by Strong Induction
To prove that a universal quantification over the set of all integers greater than or equal to some base integer
b holds, pick a fixed nonnegative integer j and then:
Basis Step: Show the statement holds for b, b+ 1, . . . , b+ j.
Recursive Step: Consider an arbitrary integer n greater than or equal to b+ j, assume (as the strong

induction hypothesis) that the property holds for each of b, b+1, . . . , n, and use
this and other facts to prove that the property holds for n+ 1.

Theorem: Every positive integer is a sum of (one or more) distinct powers of 2. Binary expansions exist!

The idea in the “Least significant first” algorithm for computing binary expansions is that the binary
expansion of half a number becomes part of the binary expansion of the number of itself. We can use this
idea in a proof by strong induction that binary expansions exist for all positive integers n.

Proof by strong induction, with b = 1 and j = 0. We need to prove that for each positive integer n,
there is a positive integer k and coe”cients a0, . . . , ak↑1 where each ai is 0 or 1 and ak↑1 ⇒= 0, and

n =
k↑1∑

i=1

ai2
i

Basis step: WTS property is true about 1.

Recursive step: Consider an arbitrary integer n → 1.

Assume (as the strong induction hypothesis, IH) that the property is true about each of 1, . . . , n.

WTS that the property is true about n+ 1.

Idea: We will apply the IH to (n+ 1) div 2.

Why is this ok?

CC BY-NC-SA 2.0 Version February 7, 2026 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Why is this helpful?

By the IH, we can write (n+1) div 2 as a sum of powers of 2. In other words, there are values ak↑1, . . . , a0

such that each ai is 0 or 1, ak↑1 = 1, and

k↑1∑

i=0

ai2
i = (n+ 1) div 2

Define the collection of coe”cients

cj =

{
aj↑1 if 1 ⇑ j ⇑ k

(n+ 1) mod 2 if j = 0

Calculating:

k∑

j=0

cj2
j = c0 +

k∑

j=1

cj2
j = c0 +

k↑1∑

i=0

ci+12
i+1 re-indexing the summation

= c0 + 2 ·
k↑1∑

i=0

ci+12
i factoring out a 2 from each term in the sum

= c0 + 2 ·
k↑1∑

i=0

ai2
i by definition of ci+1

= c0 + 2 ((n+ 1) div 2) by IH

= ((n+ 1) mod 2) + 2 ((n+ 1) div 2) by definition of c0
= n+ 1 by definition of long division

Thus, n+ 1 can be expressed as a sum of powers of 2, as required.

CC BY-NC-SA 2.0 Version February 7, 2026 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Representing positive integers with primes

Theorem: Every positive integer greater than 1 is a product of (one or more) primes.

Before we prove, let’s try some examples:

20 =

100 =

5 =

Proof by strong induction, with b = 2 and j = 0.

Basis step: WTS property is true about 2.

Since 2 is itself prime, it is already written as a product of (one) prime.

Recursive step: Consider an arbitrary integer n → 2. Assume (as the strong induction hypothesis, IH)
that the property is true about each of 2, . . . , n. WTS that the property is true about n + 1: We want to
show that n+ 1 can be written as a product of primes. Notice that n+ 1 is itself prime or it is composite.

Case 1: assume n + 1 is prime and then immediately it is written as a product of (one) prime so we are
done.

Case 2: assume that n + 1 is composite so there are integers x and y where n + 1 = xy and each of them
is between 2 and n (inclusive). Therefore, the induction hypothesis applies to each of x and y so each of
these factors of n+ 1 can be written as a product of primes. Multiplying these products together, we get a
product of primes that gives n+ 1, as required.

Since both cases give the necessary conclusion, the proof by cases for the recursive step is complete.

CC BY-NC-SA 2.0 Version February 7, 2026 (14)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Sending old-fashioned mail with postage stamps

Suppose we had postage stamps worth 5 cents and 3 cents. Which number of cents can we form using these
stamps? In other words, which postage can we pay?

11?

15?

4?

CanPay(0) ↗ ¬CanPay(1) ↗ ¬CanPay(2)↗
CanPay(3) ↗ ¬CanPay(4) ↗ CanPay(5) ↗ CanPay(6)

¬CanPay(7) ↗ ↔n ↓ Z↓8
CanPay(n)

where the predicate CanPay with domain N is

CanPay(n) = ↑x ↓ N↑y ↓ N(5x+ 3y = n)

Proof (idea): First, explicitly give witnesses or general arguments for postages between 0 and 7. To prove
the universal claim, we can use mathematical induction or strong induction.

Approach 1, mathematical induction: if we have stamps that add up to n cents, need to use them (and
others) to give n+ 1 cents. How do we get 1 cent with just 3-cent and 5-cent stamps?

Either take away a 5-cent stamps and add two 3-cent stamps,

or take away three 3-cent stamps and add two 5-cent stamps.

The details of this proof by mathematical induction are making sure we have enough stamps to use one of
these approaches.

Approach 2, strong induction: assuming we know how to make postage for all smaller values (greater than or
equal to 8), when we need to make n+1 cents, add one 3 cent stamp to however we make (n+ 1)⇓ 3 cents.

The details of this proof by strong induction are making sure we stay in the domain of the universal when
applying the induction hypothesis.

CC BY-NC-SA 2.0 Version February 7, 2026 (15)

https://creativecommons.org/licenses/by-nc-sa/2.0/

