Week6

Week 6 at a glance

We will be learning and practicing to:

e (Clearly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

— Translating between symbolic and English versions of statements using precise mathematical
language
— Using appropriate signpost words to improve readability of proofs, including ‘arbitrary’ and

‘assume’

e Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems. Use mathematical techniques to solve problems. Determine appro-
priate conceptual tools to apply to new situations. Know when tools do not apply and try different
approaches. Critically analyze and evaluate candidate solutions.

— Judging logical equivalence of compound propositions using symbolic manipulation with known
equivalences, including DeMorgan’s Law
— Writing the converse, contrapositive, and inverse of a given conditional statement
— Determining what evidence is required to establish that a quantified statement is true or false
— Evaluating quantified statements about finite and infinite domains
e Apply proof strategies, including direct proofs and proofs by contradiction, and determine whether a
proposed argument is valid or not.
— Identifying the proof strategies used in a given proof

— Identifying which proof strategies are applicable to prove a given compound proposition based
on its logical structure

— Carrying out a given proof strategy to prove a given statement
— Carrying out a universal generalization argument to prove that a universal statement is true

— Using proofs as knowledge discovery tools to decide whether a statement is true or false

TODO:

Review quiz based on Week 5 class material (due Monday 02/09/2026)

Midquarter feedback: please let us know what’s working well for you and what isn’t. https://
canvas.ucsd.edu/courses/71479/quizzes

Homework 3 due on Gradescope https://www.gradescope.com/ (Thursday 02/12/2026)
Review quiz based on Week 6 class material (due Monday 02/16/2026)

No class Monday of Week 7 (02/16/2026) in observance of UCSD holiday.
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Week 6 Monday: Proofs for properties of sets and numbers

Facts about numbers

We now have propositional and predicate logic that can help us express statements about any domain. We
will develop proof strategies to craft valid argument for proving that such statements are true or disproving
them (by showing they are false). We will practice these strategies with statements about sets and numbers,
both because they are familiar and because they can be used to build cryptographic systems. Then we
will apply proof strategies more broadly to prove statements about data structures and machine learning
applications.

1. Addition and multiplication of real numbers are each commutative and associative.
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2. The product of two positive numbers is p051tlve of two negative numbers is positive, and of a positive
and a negative number is negative.
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3. The sum of two integers, the product of two integers, and the difference between two integers are each
integers.

4. For every integer x there is no mteger strictly between x and x + 1,
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5. When z,y are positive integers, xy > = and zy > y.
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Definition: When a and b are integers and a is nonzero, a divides b means there is an integer ¢ such that
Ne—————"

Factoring

FO
Symbolically, F'( (a,b) ) :3Q@Z (\o f&C/> and is a predicate over the domain 7 X Z

Other (synonymous) ways to say that F'( (a,b) ) is true:
Son é;\\l“é&g &’V

a is a factor of b a is a divisor of b b is a multiple of a alb

When a is a positive integer and b is any integer, a|b exactly when b mod a =0

When « is a positive integer and b is any integer, a|b exactly when b = a - (b div a)
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Translate these quantified statements by matching to English statement on right.

Ja € Z7° ( F( (a,a))) ~_ Every nonzero integer is a factor of itself.

Ja € Z7° ( ~F( (a,a) ) ) - No nonzero integer is a factor of itself.

At least one nonzero integer is a factor of itself.

e

Va € Z7° ( F( (a,a) ) ) —

Va € Z#° ( =F((a,a) )) — Some nonzero integer is not a factor of itself.

Claim: Every nonzero integer is a factor of itself.
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Definition: an integer n is even means that there is an integer a such that n = 2a; an integer n is
odd means that there is an integer a such that n = 2a + 1. Equivalently, an integer n is even means
n mod 2 = 0; an integer n is odd means n mod 2 = 1. Also, an integer is even if and only if it is not

odd.

Definition: An integer p greater than 1 is called prime means the only positivgja/ct\Jors\gff ar@n@
A positive integer that is greater than 1 and is not prime is called composite. ) \

Extra examples: Use the definition to prove that 1 is not prime, 2 is prime, 3 is prime, 4 is not prime, 5 is
prime, 6 is not prime, and 7 is prime. Soeve oK Nee ool -

'?HR-: The statement “There are thre@positive integers that are prime.”

Hint: These numbers would be of the form p,p + 1,p + 2 (where p is a positive integer).
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se: The statement “There are three @odd positive integers that are prime.”

Hint: These numbers would be of the form p,p + 2,p + 4 (where p is an odd positive integer).
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Pre-class reading for Week 6 Wednesday

At this point, we’ve seen the proof strategies

e A counterexample to prove that Ve P(z) is e To prove that p A ¢ is true, have two subgoals:
false. subgoal (1) prove p is true; and, subgoal (2)
prove ¢ is true. To prove that p A ¢ is false, it’s

e A witness to prove that JxP(z) is true. enough to prove that p is false. To prove that

p/Aq is false, it’s enough to prove that ¢ is false.
e Proof of universal by exhaustion to prove N
that Va P(z) is true when P has a finite domain e Proof of conditional by direct proof
e Proof by universal generalization to prove e Proof of conditional by contrapositive proof

that Va P(z) is true using an arbitrary element e Proof of disjuction using equivalent condi-

of the domain. tional: To prove that the disjunction p V ¢ is
true, we can rewrite it equivalently as —p — ¢

e To prove that 3z P(z) is false, write the univer- and then use direct proof or contrapositive

sal statement that is logically equivalent to its proof.
negation and then prove it true using universal
generalization. e Proof by cases.

Recall the definitions: The set of RNA strands S is defined (recursively) by:

Basis Step: Ae S ceSuesS eSS
Recursive Step: If s € S and b € B, then sb e S

where sb is string concatenation.
The function rnalen that computes the length of RNA strands in S is defined recursively by:

rnalen: S — Z7F
Basis Step: If b € B then rnalen(b) =1
Recursive Step: If s € S and b € B, then rnalen(sb) =1+ rnalen(s)

The function basecount that computes the number of a given base b appearing in a RNA strand s is defined
recursively by:

basecount : S x B —+ N

1 when by = by

0 when by # by

1 + basecount( (s,by) ) when by = by
basecount( (s,by) ) when by # by

Basis Step: Ifby € Bjby € B basecount( (by,b2) ) =

Recursive Step: If s € S;b; € B,by € B basecount( (sby,by) ) =
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Which proof strategies could be used to prove each of the following statements?

Hint: first translate the statements to English and identify the main logical structure.

Vb e B 3ds e S ( basecount( (s,b) ) >0) Tog exn \apse | SReces
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ds € S (rnalen(s) = basecount( (s,A) )
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Week 6 Wednesday: Structural Induction

Claim Vs € S ( rnalen(s) > 0)

Proof: Let s be an arbitrary RNA strand. By the recursive definition of S, either s € B or there is some
strand sy and some base b such that s = sqb. We will show that the inequality holds for both cases.

%ag ¢ Case: Assume s € B. We need to show rnalen(s) > 0. By the basis step in the definition of rnalen,
AVa% e

rnalen(s) =1

which is greater than 0, as required.
\_/,\\/\

\M Assume there is some strand so and some base b such that s = sob. We will sllgovgﬂ ( ti@

stronger claim) that o - T}Dg‘;‘ﬁsj@;\@? ?S {D; oy
Vu € S Vb € B ( rnalen(u) > 0 — rnalen(ub) > 0 ) Sue otusus \\\”5 Sles A0
G . . . . oxe ol Aok SNend' s e Ant O ¢ -
'~ Consider an arbitrary RNA strand v and an arbitrary base b, and assume towards a direct proof,

that

rnalen(u) > 0 K=o

We need to show that rnalen(ub) > 0. oy defurn £ rrolen

SINY ‘
rnalen(ub) = 1+ rnalen(u) >1+0=1>0
L

as required. o) INCIRAN (ralen (W 7 0

Proof by Structural Induction To prove a universal quantification over a recursively defined set:

Basis Step: Show the statement holds for elements specified in the basis step of the definition.

Recursive Step: Show that if the statement is true for each of the elements used to construct new
elements in the r@l%\fe step of the definition, the result holds for these new elements.
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Claim Vs € S (rnalen(s) > basecount( (s,A) )):
Proof: We proceed by structural induction on the recursively defined set S.

Basis Case: We need to prove that the inequality holds for each element in the basis step of the recursive
definition of S. Need to show

( rnalen(A) > basecount( (A,A) ) )\ [ rnalen(C) > basecount( (C,A) ) )
A( rnalen(U) > basecount( (U,A) ) )\ ( rnalen(G) > basecount( (G,A) ) )

We calculate, using the definitions of rnalen and basecount:
@Om\® CeolenCAY > Lasccant ( (ANY) .
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Recursive Case: We will prove that

Vu € S Vb € B ( rnalen(u) > basecount( (u,A) ) — rnalen(ub) > basecount( (ub,A) )

Consider arbitrary RNA strand « and arbitrary base b. Assume, as the induction hypothesis, that
rnalen(u) > basecount( (u,A) ). We need to show that rnalen(ub) > basecount( (ub,A) ).

Using the recursive step in the definition of the function rnalen:

L H’S = rnalen(ub) =1+ W RS = \Oagcq,c\mji (C\A\aJQB

The recursive step in the definition of the function basecount has two cases. We notice that b = AV b # A
and we proceed by cases.

Case i. Assume b = A.

Using the first case in the recursive step in the definition of the function basecount:
RS = basecount( (ub,A) ) =1 —I—W/)
By the induction hypothesis, we know that basecount( (u,A) ) < rnalen(u) so:
VBN = basecount( (ub,A) ) =1+ basecount( (u,A) )Tg 1 + rnalen(u) = rnalen(ub) LS

and, thus, basecount( (ub,A) ) < rnalen(ub), as required.
Case ii. Assume b # A.

Using the second case in the recursive step in the definition of the function basecount:
basecount( (ub,A) ) = basecount( (u,A) )
By the induction hypothesis, we know that basecount( (u,A) ) < rnalen(u) so:
basecount( (ub,A) ) = basecount( (u,A) ) < rnalen(u) < 1+ rnalen(u) = rnalen(ub)

and, thus, basecount( (ub,A) ) < rnalen(ub), as required.
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New Noesdo Apdow SWRERE duehen, nducnon ORETELed
To organize our proofs, it’s useful to highlight which claims are most important for our overall goals. We
use some terminology to describe different roles statements can have.
Theorem: Statement that can be shown to be true, usually an important one.
Less important theorems can be called proposition, fact, result, claim.
Lemma: A less important theorem that is useful in proving a theorem.

Corollary: A theorem that can be proved directly after another one has been proved, without needing a
lot of extra work.

Invariant: A theorem that describes a property that is true about an algorithm or system no matter what
inputs are used.

> > |
N
1 83
| // \\><
L>< :

Theorem: A robot on an infinite 2-dimensional integer grid starts at (0,0) and at each step moves to
diagonally adjacent grid point. This robot gz  circle one) reach (1,0).
Definition The set of positions the robot can visit Pos is defined by:

Basis Step: (0,0) € Pos A7
Recursive Step:  If (x,y) € Pos, then S )‘&*O )

(R, \Aﬂv}\ L Oy %43/

are also in Pos

FExample elements of Pos are:

(0,00 D, ( 2.0)

VTS (o) & Fos

CC BY-NC-SA 2.0 Version February 7, 2026 (9)


https://creativecommons.org/licenses/by-nc-sa/2.0/

Lemma: V(x,y) € Pos (x + y is an even integer )

Why are we calling this a lemma?

oS (QLU&S\Q‘Q\\_\

=e

waey 2AN

Proof of theorem using lemma: To show is (1,0) ¢ Pos. Rewriting the lemma to explicitly restrict the
domain of the universal, we have V(z,y) ( (z,y) € Pos — (x+y is an even integer) ). Since the universal

is true, ( (1,0) € Pos —

(14 0 is an even integer) ) is a true statement. Evaluating the conclusion of

this conditional statement: By definition of long division, since 1 = 0-2+ 1 (where 0 € Z and 1 € Z and
0 <1 < 2 mean that 0 is the quotient and 1 is the remainder), 1 mod 2 = 1 which is not 0 so the conclusion
is false. A true conditional with a false conclusion must have a false hypothesis: (1,0) ¢ Pos, QED. O

Proof of lemma by structural induction:

Basis Step: WS
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Recursive Step: Consider arbitrary (z,y) € Pos. To show is:

(x + y is an even integer) — (sum

(el

Assume as the induction hypothesis, IH that:

~

of coordinates of next position is even integer)
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Week 6 Friday: Mathematical and Strong Induction

Proof by Mathematical Induction
To prove a universal quantification over the set of all integers greater than or equal to some base integer b,

Basis Step: Show the property holds for b.

Recursive Step: Consider an arbitrary integer n greater than or equal to b, assume (as the induction
hypothesis) that the property holds for n, and use this and other facts to prove that the property
holds for n + 1.

The set N is recursively defined. Therefore, the function sumPow : N — N which computes, for input 4,
the sum of the nonnegative powers of 2 up to and including exponent i is defined recursively by
NW\_/—\/\_/\/\/

Basis step: sumPow(0) =1
Recursive step: If 2 € N, then sumPow(z + 1) = sumPow(x) + 2°t*
sumPow(0) = 2 = 2 -\
O+ [ 2 o Z\ B 2‘2 _\
sumPow(1) = Svon Too (O + 2 = 1 +2 = 1I+x2 =3 2 =
(=< z o o \+ 27 B 23 0
sumPow(2) =  Sue Ve C () < 2 - 3+ = 4T3 )«

Fill in the blanks in the following proof of

Vn € N (sumPow(n) = 2" — 1)

Proof: Since N is recursively defined, we proceed by _SWLCNOY AN NS
(@ Xl

Basis case: We need to show that Sumtao(0)=2 -\ | Evaluating each side: LHS = sumPow(0) =
1 by the basis case in the recursive definition of sumPow; RHS = 2°*1 —1=2! -1 =2—-1 = 1. Since

1=1, th lity holds. e “
» the equality holds. ) =TT s snRates ST

Recursive case: @ arbitrary natural number n and )as the \r\c)\og\%@(\ \nu\gﬁ(‘(\e\& that
()«
sumPow(n) = 2" — 1. show that sumBw(n«)=2 ' | . Evaluating each side:

LHS = sumPow(n + 1) = sumPow(n) + 271 2 (271 — 1) 4 2n+1,

RHS = 2(rtDF1 _p SRR o gnbl . (nl y gnl) _ p TEIUPRE (gnl ) g gnl

Thus, LHS = RHS. The structural induction is complete and we have proved the universal generalization.
O
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Proof by Strong Induction
To prove that a universal quantification over the set of all integers greater than or equal to some base integer
b holds, pick a fixed nonnegative integer j and then:
Basis Step: Show the statement holds for b, b+ 1, ..., b+ J.
Recursive Step: Consider an arbitrary integer n greater than or equal to b+ j, assume (as the strong
induction hypothesis) that the property holds for each of b, b+ 1, ..., n, and use
this and other facts to prove that the property holds for n + 1.

Theorem: Every positive integer is a sum of (one or more) distinct powers of 2. Binary expansions exist!
AN T o~
feaak

- >

The idea in the “Least significant first” algorithm for computing binary expansions is that the binary
expansion of half a number becomes part of the binary expansion of the number of itself. We can use this
idea in a proof by strong induction that binary expansions exist for all positive integers n.

Proof by strong induction, with b = 1 and j = 0. We need to prove that for each positive integer n,
there is a positive integer k and coefficients aq, ..., ar_; where each a; is 0 or 1 and ax_; # 0, and

k—1
n= Z a;2!
=1

Basis step: WTS property is true about 1. ‘
\,

n= 1= |2 2, 6,2 3,1

oD

I

Recursive step: Consider an arbitrary intege

Assume (as the strong induction hypothesis, IH) that the property is true about each of 1,... n.
WTS that the property is true about n + 1.
Idea: We will apply the IH to (n+ 1) div 2.

Why is this ok? N e el 5® w\%{\m —%\/0\% @*\ 3 é;\\! Z

{ R \‘\*&Be/( \;e}wd‘t;e O\ \ @\N‘\Q}\ \(\ C \I\Q\QB/\\FQ .
’ o y ’ é\ -
3] \\(\SS . -v ¢S \\6 &%\(\K; &O UQ( Q
\Ow\:\.s«é (\>/\ SO (\‘k>/r2.

o (n*) &7 Z\ 7 S
° &(\4[} &\[2 \< [ —/: 3€% L@:O\K)XZ_ ‘(\‘%\}\ A
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q\k\\ 5%

\(\,\B
Why is this helpful?
By the TH, we can write (n+ 1) div 2 as a sum of powers of 2. In other words, there are values ay_1, ..., aqg
such that each a; is O or 1, a_; = 1, and
k—1
D a2 = (n+1) div 2
i=0
Define the collection of coefficients
o= Qj—1 1f1§j§k
7 l(n+1) mod 2 ifj=0
Calculating:
k k k—1
Z c;2) = ¢y + Z ;2! =co+ Z cip1271 re-indexing the summation
§=0 j=1 i=0
k—1
=co+2- Z Cip12' factoring out a 2 from each term in the sum
i=0
k—1
=cy+2- Z a;2" by definition of ¢; 14
i=0
=c+2((n+1)div 2) by TH
=((n+1)mod2)+2((n+1)div 2) by definition of ¢
=n+1 by definition of long division

Thus, n + 1 can be expressed as a sum of powers of 2, as required.
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Representing positive integers with primes

Theorem: Every positive integer greater than 1 is a product of (one or more) primes.
Before we prove, let’s try some examples:

20 =

w=- 4- 28 = 2-24 S5

5 —

Proof by strong induction, with b =2 and 5 = 0.

Basis step: WTS property is true about 2.

Since 2 is itself prime, it is already written as a product of (one) prime.

Recursive step: Consider an arbitrary integer n > 2. Assume (as the strong induction hypothesis, TH)
that the property is true about each of 2,...,n. WTS that the property is true about n + 1: We want to
show that n + 1 can be written as a product of primes. Notice that n + 1 is itself prime or it is composite.

Case I: assume n + 1 is prime and then immediately it is written as a product of (one) prime so we are
done.

Case 2: assume that n + 1 is composite so there are integers x and y where n + 1 = xy and each of them
is between 2 and n (inclusive). Therefore, the induction hypothesis applies to each of x and y so each of
these factors of n + 1 can be written as a product of primes. Multiplying these products together, we get a
product of primes that gives n + 1, as required.

Since both cases give the necessary conclusion, the proof by cases for the recursive step is complete.
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Sending old-fashioned mail with postage stamps

Suppose we had postage stamps worth 5 cents and 3 cents. Which number of cents can we form using these
stamps? In other words, which postage can we pay?

117 |z ~ 2 3

157 R
\ D O SS \oNEL
o/ \ -

< =~ 33

47 ‘
4 b
CanPay(0) A =CanPay(1) A ~CanPay(2)A

CanPay(3) AN =CanPay(4) A CanPay(5) A CanPay(6)
=CanPay(7) ANVn € Z=*CanPay(n)
N U U\

where the predicate C'anPay with domain N is

CanPay(n) = 3r € NIy € N(bz + 3y = n)

Proof (idea): First, explicitly give witnesses or general arguments for postages between 0 and 7. To prove
the universal claim, we can use mathematical induction or strong induction.

Approach 1, mathematical induction: if we have stamps that add up to n cents, need to use them (and
others) to give n + 1 cents. How do we get 1 cent with just 3-cent and 5-cent stamps?

Either take away a 5-cent stamps and add two 3-cent stamps,

or take away three 3-cent stamps and add two 5-cent stamps.

Thé@@ this proof by mathematical induction are making sure we have enough stamps to use one of
these approaches.

pproach 2, strong induction: assuming we know how to make postage for all smaller values (greater than or
equal to §g}\1§n we need to make n+1 cents, add one 3 cent stamp to however we make (n + 1) — 3 cents.

Thé\\;\detai’fs of this proof by strong induction are making sure we stay in the domain of the universal when
applying the induction hypothesis.
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