
Week7

Week 7 at a glance

We will be learning and practicing to:

• Clearly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

– Translating between symbolic and English versions of statements using precise mathematical
language

– Using appropriate signpost words to improve readability of proofs, including ’arbitrary’ and
’assume’

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems. Use mathematical techniques to solve problems. Determine appro-
priate conceptual tools to apply to new situations. Know when tools do not apply and try different
approaches. Critically analyze and evaluate candidate solutions.

– Judging logical equivalence of compound propositions using symbolic manipulation with known
equivalences, including DeMorgan’s Law

– Writing the converse, contrapositive, and inverse of a given conditional statement

– Determining what evidence is required to establish that a quantified statement is true or false

– Evaluating quantified statements about finite and infinite domains

• Apply proof strategies, including direct proofs and proofs by contradiction, and determine whether a
proposed argument is valid or not.

– Identifying the proof strategies used in a given proof

– Identifying which proof strategies are applicable to prove a given compound proposition based
on its logical structure

– Carrying out a given proof strategy to prove a given statement

– Carrying out a universal generalization argument to prove that a universal statement is true

– Using proofs as knowledge discovery tools to decide whether a statement is true or false

TODO:

Homework assignment 4 (due Tuesday May 14, 2024)

Review quiz based on class material each day (due Friday May 17, 2024).

Homework assignment 5 (due Tuesday May 21, 2024)
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Week 7 Monday: Mathematical and Strong Induction

Visualizing induction

Wikimedia commons
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Proof by Mathematical Induction
To prove a universal quantification over the set of all integers greater than or equal to some base integer b,

Basis Step: Show the property holds for b.

Recursive Step: Consider an arbitrary integer n greater than or equal to b, assume (as the induction
hypothesis) that the property holds for n, and use this and other facts to prove that the property
holds for n+ 1.

Proof by Strong Induction
To prove that a universal quantification over the set of all integers greater than or equal to some base integer
b holds, pick a fixed nonnegative integer j and then:
Basis Step: Show the statement holds for b, b+ 1, . . . , b+ j.
Recursive Step: Consider an arbitrary integer n greater than or equal to b+ j, assume (as the strong

induction hypothesis) that the property holds for each of b, b+1, . . . , n, and use
this and other facts to prove that the property holds for n+ 1.

Theorem: Every positive integer is a sum of (one or more) distinct powers of 2. Binary expansions exist!

Recall the definition for binary expansion:

Definition For n a positive integer, the binary expansion of n is

(ak−1 · · · a1a0)b

where k is a positive integer, a0, a1, . . . , ak−1 are each 0 or 1, ak−1 ̸= 0, and

n =
k−1∑
i=0

aib
i

The idea in the “Least significant first” algorithm for computing binary expansions is that the binary
expansion of half a number becomes part of the binary expansion of the number of itself. We can use this
idea in a proof by strong induction that binary expansions exist for all positive integers n.

Proof by strong induction, with b = 1 and j = 0.
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Basis step: WTS property is true about 1.

Recursive step: Consider an arbitrary integer n ≥ 1.

Assume (as the strong induction hypothesis, IH) that the property is true about each of 1, . . . , n.

WTS that the property is true about n+ 1.

Idea: We will apply the IH to (n+ 1) div 2.

Why is this ok?

Why is this helpful?

By the IH, we can write (n+1) div 2 as a sum of powers of 2. In other words, there are values ak−1, . . . , a0
such that each ai is 0 or 1, ak−1 = 1, and

k−1∑
i=0

ai2
i = (n+ 1) div 2

Define the collection of coefficients

cj =

{
aj−1 if 1 ≤ j ≤ k

(n+ 1) mod 2 if j = 0
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Calculating:

k∑
j=0

cj2
j = c0 +

k∑
j=1

cj2
j = c0 +

k−1∑
i=0

ci+12
i+1 re-indexing the summation

= c0 + 2 ·
k−1∑
i=0

ci+12
i factoring out a 2 from each term in the sum

= c0 + 2 ·
k−1∑
i=0

ai2
i by definition of ci+1

= c0 + 2 ( (n+ 1) div 2 ) by IH

= ( (n+ 1) mod 2 ) + 2 ( (n+ 1) div 2 ) by definition of c0

= n+ 1 by definition of long division

Thus, n+ 1 can be expressed as a sum of powers of 2, as required.

Representing positive integers with primes

Theorem: Every positive integer greater than 1 is a product of (one or more) primes.

Before we prove, let’s try some examples:

20 =

100 =

5 =

Proof by strong induction, with b = 2 and j = 0.

Basis step: WTS property is true about 2.

Since 2 is itself prime, it is already written as a product of (one) prime.

Recursive step: Consider an arbitrary integer n ≥ 2. Assume (as the strong induction hypothesis, IH)
that the property is true about each of 2, . . . , n. WTS that the property is true about n + 1: We want to
show that n+ 1 can be written as a product of primes. Notice that n+ 1 is itself prime or it is composite.

Case 1: assume n + 1 is prime and then immediately it is written as a product of (one) prime so we are
done.

Case 2: assume that n + 1 is composite so there are integers x and y where n + 1 = xy and each of them
is between 2 and n (inclusive). Therefore, the induction hypothesis applies to each of x and y so each of
these factors of n+ 1 can be written as a product of primes. Multiplying these products together, we get a
product of primes that gives n+ 1, as required.

Since both cases give the necessary conclusion, the proof by cases for the recursive step is complete.
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Sending old-fashioned mail with postage stamps

Suppose we had postage stamps worth 5 cents and 3 cents. Which number of cents can we form using these
stamps? In other words, which postage can we pay?

11?

15?

4?

CanPay(0) ∧ ¬CanPay(1) ∧ ¬CanPay(2)∧
CanPay(3) ∧ ¬CanPay(4) ∧ CanPay(5) ∧ CanPay(6)

¬CanPay(7) ∧ ∀n ∈ Z≥8CanPay(n)

where the predicate CanPay with domain N is

CanPay(n) = ∃x ∈ N∃y ∈ N(5x+ 3y = n)

Proof (idea): First, explicitly give witnesses or general arguments for postages between 0 and 7. To prove
the universal claim, we can use mathematical induction or strong induction.

Approach 1, mathematical induction: if we have stamps that add up to n cents, need to use them (and
others) to give n+ 1 cents. How do we get 1 cent with just 3-cent and 5-cent stamps?

Either take away a 5-cent stamps and add two 3-cent stamps,

or take away three 3-cent stamps and add two 5-cent stamps.

The details of this proof by mathematical induction are making sure we have enough stamps to use one of
these approaches.

Approach 2, strong induction: assuming we know how to make postage for all smaller values (greater than or
equal to 8), when we need to make n+1 cents, add one 3 cent stamp to however we make (n+ 1)− 3 cents.

The details of this proof by strong induction are making sure we stay in the domain of the universal when
applying the induction hypothesis.
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Finding a winning strategy for a game

Consider the following game: two players start with two (equal) piles of jellybeans in front of them. They
take turns removing any positive integer number of jellybeans at a time from one of two piles in front of
them in turns.

The player who removes the last jellybean wins the game.

Which player (if any) has a strategy to guarantee to win the game?

Try out some games, starting with 1 jellybean in each pile, then 2 jellybeans in each pile, then 3 jellybeans
in each pile. Who wins in each game?

Notice that reasoning about the strategy for the 1 jellybean game is easier than about the strategy for the
2 jellybean game.

Formulate a winning strategy by working to transform the game to a simpler one we know we can win.
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Player 2’s Strategy: Take the same number of jellybeans that Player 1 did, but from the opposite pile.

Why is this a good idea: If Player 2 plays this strategy, at the next turn Player 1 faces a game with the
same setup as the original, just with fewer jellybeans in the two piles. Then Player 2 can keep playing this
strategy to win.

Claim: Player 2’s strategy guarantees they will win the game.

Proof: By strong induction, we will prove that for all positive integers n, Player 2’s strategy guarantees a
win in the game that starts with n jellybeans in each pile.

Basis step: WTS Player 2’s strategy guarantees a win when each pile starts with 1 jellybean.

In this case, Player 1 has to take the jellybean from one of the piles (because they can’t take from both
piles at once). Following the strategy, Player 2 takes the jellybean from the other pile, and wins because
this is the last jellybean.

Recursive step: Let n be a positive integer. As the strong induction hypothesis, assume that Player 2’s
strategy guarantees a win in the games where there are 1, 2, . . . , n many jellybeans in each pile at the start
of the game.

WTS that Player 2’s strategy guarantees a win in the game where there are n+ 1 in the jellybeans in each
pile at the start of the game.

In this game, the first move has Player 1 take some number, call it c (where 1 ≤ c ≤ n + 1), of jellybeans
from one of the piles. Playing according to their strategy, Player 2 then takes the same number of jellybeans
from the other pile.

Notice that (c = n+ 1) ∨ (c ≤ n).

Case 1: Assume c = n+ 1, then in their first move, Player 2 wins because they take all of the second pile,
which includes the last jellybean.

Case 2: Assume c ≤ n. Then after Player 2’s first move, the two piles have an equal number of jellybeans.
The number of jellybeans in each pile is

(n+ 1)− c

and, since 1 ≤ c ≤ n, this number is between 1 and n. Thus, at this stage of the game, the game appears
identical to a new game where the two piles have an equal number of jellybeans between 1 and n. Thus,
the strong induction hypothesis applies, and Player 2’s strategy guarantees they win.
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Week 7 Wednesday: Recursive Data Structures

Definition The set of linked lists of natural numbers L is defined recursively by

Basis Step: [] ∈ L
Recursive Step: If l ∈ L and n ∈ N, then (n, l) ∈ L

Visually:

Example: the list with two nodes whose first node has 20 and whose second node has 42

Definition: The length of a linked list of natural numbers L, length : L → N is defined by

Basis Step: length( [] ) = 0
Recursive Step: If l ∈ L and n ∈ N, then length( (n, l) ) = 1 + length(l)

Definition: The function prepend : L×N → L that adds an element at the front of a linked list is defined
by

Definition The function append : L×N → L that adds an element at the end of a linked list is defined by

Basis Step: If m ∈ N then
Recursive Step: If l ∈ L and n ∈ N and m ∈ N, then
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Claim: ∀l ∈ L ( length( append( (l, 100) ) ) > length(l) )

Proof: By structural induction on L, we have two cases:

Basis Step

1. To Show length( append( ([], 100) ) ) > length( [] ) Because [] is the only element defined in the basis
step of L, we only need to prove that the property
holds for [].

2. To Show length( (100, []) ) > length( [] ) By basis step in definition of append.

3. To Show (1 + length( [] )) > length( [] ) By recursive step in definition of length.

4. To Show 1 + 0 > 0 By basis step in definition of length.

5. T By properties of integers

QED Because we got to T only by rewriting To Show
to equivalent statements, using well-defined proof
techniques, and applying definitions.

Recursive Step

Consider an arbitrary: l′ ∈ L, n ∈ N, and we assume as the induction hypothesis that:

length( append( (l′, 100 ) ) ) > length(l′)

Our goal is to show that length( append( ( (n, l′), 100 ) ) ) > length( (n, l′) ) is also true. We start by
working with one side of the candidate inequality:

LHS = length( append( ( (n, l′), 100 ) ) )

= length( (n, append( (l′, 100) ) ) ) by the recursive definition of append

= 1 + length( append( (l′, 100) ) ) by the recursive definition of length

> 1 + length(l′) by the induction hypothesis

= length((n, l′)) by the recursive definition of length

= RHS
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Prove or disprove: ∀n ∈ N ∃l ∈ L ( length(l) = n )
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Week 7 Friday: Proof by Contradiction

New! Proof by Contradiction
To prove that a statement p is true, pick another statement r and once we show that ¬p → (r ∧ ¬r) then
we can conclude that p is true.
Informally The statement we care about can’t possibly be false, so it must be true.

Least and greatest

For a set of numbers X, how do you formalize “there is a greatest X” or “there is a least X”?

Prove or disprove: There is a least prime number.

Prove or disprove: There is a greatest integer.

Approach 1, De Morgan’s and universal generalization:

Approach 2, proof by contradiction:
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Extra examples: Prove or disprove that N, Q each have a least and a greatest element.

Definition: Greatest common divisor Let a and b be integers, not both zero. The largest integer d
such that d is a factor of a and d is a factor of b is called the greatest common divisor of a and b and is
denoted by gcd( (a, b) ).

Why do we restrict to the situation where a and b are not both zero?

Calculate gcd( (10, 15) )

Calculate gcd( (10, 20) )

Claim: For any integers a, b (not both zero), gcd( (a, b) ) ≥ 1.

Proof: Show that 1 is a common factor of any two integers, so since the gcd is the greatest common factor
it is greater than or equal to any common factor.

Claim: For any positive integers a, b, gcd( (a, b) ) ≤ a and gcd( (a, b) ) ≤ b.

Proof Using the definition of gcd and the fact that factors of a positive integer are less than or equal to
that integer.
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Claim: For any positive integers a, b, if a divides b then gcd( (a, b) ) = a.

Proof Using previous claim and definition of gcd.

Claim: For any positive integers a, b, c, if there is some integer q such that a = bq + c,

gcd( (a, b) ) = gcd( (b, c) )

Proof Prove that any common divisor of a, b divides c and that any common divisor of b, c divides a.

Lemma: For any integers p, q (not both zero), gcd
( (

p
gcd( (p,q) )

, q
gcd( (p,q) )

) )
= 1 . In other words, can

reduce to relatively prime integers by dividing by gcd.

Proof:

Let x be arbitrary positive integer and assume that x is a factor of each of p
gcd( (p,q) )

and q
gcd( (p,q) )

. This
gives integers α, β such that

αx =
p

gcd( (p, q) )
βx =

q

gcd( (p, q) )

Multiplying both sides by the denominator in the RHS:

αx · gcd( (p, q) ) = p βx · gcd( (p, q) ) = q

In other words, x · gcd( (p, q) ) is a common divisor of p, q. By definition of gcd, this means

x · gcd( (p, q) ) ≤ gcd( (p, q) )

and since gcd( (p, q) ) is positive, this means, x ≤ 1.
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Sets of numbers

We’ve seen multiple representations of the set of positive integers (using base expansions and using prime
factorization). Now we’re going to expand our attention to other sets of numbers as well.

The set of rational numbers, Q is defined as{
p

q
| p ∈ Z and q ∈ Z and q ̸= 0

}
or, equivalently, {x ∈ R | ∃p ∈ Z∃q ∈ Z+(p = x · q)}

Extra practice: Use the definition of set equality to prove that the definitions above give the same set.

We have the following subset relationships between sets of numbers:

Z+ ⊊ N ⊊ Z ⊊ Q ⊊ R

Which of the proper subset inclusions above can you prove?

Goal: The square root of 2 is not a rational number. In other words: ¬∃x ∈ Q(x2 − 2 = 0)

Attempted proof: The definition of the set of rational numbers is the collection of fractions p/q where p
is an integer and q is a nonzero integer. Looking for a witness p and q, we can write the square root of 2
as the fraction

√
2/1, where 1 is a nonzero integer. Since the numerator is not in the domain, this witness

is not allowed, and we have shown that the square root of 2 is not a fraction of integers (with nonzero
denominator). Thus, the square root of 2 is not rational.

The problem in the above attempted proof is that

Lemma 1: For every two integers a and b, not both zero, with gcd( (a, b) ) = 1, it is not the case that
both a is even and b is even.

Lemma 2: For every integer x, x is even if and only if x2 is even.

Proof: Towards a proof by contradiction, we will define a statement r such that
√
2 ∈ Q → (r ∧ ¬r).

Assume that
√
2 ∈ Q. Namely, there are positive integers p, q such that

√
2 =

p

q

Let a = p
gcd( (p,q) )

, b = q
gcd( (p,q) )

, then

√
2 =

a

b
and gcd( (a, b) ) = 1

By Lemma 1, a and b are not both even. We define r to be the statement “a is even and b is even”, and we
have proved ¬r.
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Squaring both sides and clearing denominator: 2b2 = a2.

By definition of even, since b2 is an integer, a2 is even.

By Lemma 2, this guarantees that a is even too. So, by definition of even, there is some integer (call it c),
such that a = 2c.

Plugging into the equation:
2b2 = a2 = (2c)2 = 4c2

and dividing both sides by 2
b2 = 2c2

and since c2 is an integer, b2 is even. By Lemma 2, b is even too. Thus, a is even and b is even and we have
proved r.

In other words, assuming that
√
2 ∈ Q guarantees r ∧ ¬r, which is impossible, so

√
2 /∈ Q. QED
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Review Quiz

1. Mathematical and strong induction for properties of numbers

(a)

In class, we proved the theorem that: Every positive integer is a sum of (one or more) distinct
powers of 2.

What’s wrong with the following attempted proof of this fact?

Attempted proof by mathematical induction, with b = 1.

Basis step: WTS 1 can be written as a sum of (one or more) distinct powers of 2. Since 1 = 20,
we are done.

Recursive step: Consider an arbitrary integer n ≥ 1. By the IH, we can write n as a sum of
distinct powers of 2. Since 1 = 20, it is a power of 2 and we can add it as a term to this sum of
powers of 2. When we do so, the terms sum to n+ 1 and we are done.

i. The basis step is not sufficient.

ii. The induction hypothesis is not stated correctly.

iii. It’s wrong to say that 1 is a power of 2.

iv. Adding the 20 to the sum of powers doesn’t give the correct value.

v. Adding the 20 to the sum of powers is problematic for a different reason.

(b)

In this question, we’ll consider two possible proofs of the statement

∀n ∈ Z≥8∃x ∈ N∃y ∈ N(5x+ 3y = n)

i. First approach, using mathematical induction (b = 8).
Basis step: WTS property is true about 8. Consider the witnesses x = 1, y = 1. These are
nonnegative integers and 5 · 1 + 3 · 1 = 8, as required.
Recursive step: Consider an arbitrary n ≥ 8. Assume (as the induction hypothesis,
IH) that there are nonnegative integers x, y such that n = 5x + 3y. WTS that there are
nonnegative integers x′, y′ such that n+1 = 5x′ +3y′. We consider two cases, depending on
whether any 5 cent stamps are used for n.
Case 1: Assume x ≥ 1 (we assume that at least one 5 cent stamp is used for n). Define
x′ = x− 1 and y′ = y + 2 (both in N by case assumption).
Calculating:

5x′ + 3y′
by def
= 5(x− 1) + 3(y + 2) = 5x− 5 + 3y + 6

rearranging
= (5x+ 3y)− 5 + 6

IH
= n− 5 + 6 = n+ 1

Case 2: Assume x = 0. Therefore n = 3y, so since n ≥ 8, y ≥ 3. Define x′ = 2 and y′ = y−3
(both in N by case assumption). Calculating:

5x′ + 3y′
by def
= 5(2) + 3(y − 3) = 10 + 3y − 9

rearranging
= 3y + 10− 9

IH and case
= n+ 10− 9 = n+ 1
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Since the goal has been proved from each case, the proof by cases is complete and we have
proved the recursive step. □

Why was the recursive step split into two cases?

A. Because there are two variables x and y that need witnesses.

B. Because the statement has alternating quantifiers ∀ and ∃
C. Because the witness values need to be nonnegative and subtraction may lead to negative

values.

D. Because the domain is all integers greater than or equal to 8.

E. Because there are two steps in the recursive definition of N
ii. Second approach, by strong induction (b = 8 and j = 2)

Basis step: WTS property is true about 8, 9, 10

• Consider the witnesses x = 1, y = 1. These are nonnegative integers and 5 · 1+3 · 1 = 8,
as required.

• Consider the witnesses x = 0, y = 3. These are nonnegative integers and 5 · 0+3 · 3 = 9,
as required.

• Consider the witnesses x = 2, y = 0. These are nonnegative integers and 5 ·2+3 ·0 = 10,
as required.

Recursive step: Consider an arbitrary n ≥ 10. Assume, as the strong induction hypothesis,
that the property is true about each of 8, 9, 10, . . . , n. WTS that there are nonnegative
integers x′, y′ such that n+ 1 = 5x′ + 3y′.
Since Blank 1, by the strong induction hypothesis, there are nonnegative integers x, y such
that (n+ 1)− 3 = 5x+ 3y. Choosing Blank 2 works because

5x′ + 3y′ = 5x+ 3y + 3 = (n+ 1)− 3 + 3 = n+ 1.

Choose a true and useful statement to fill in Blank 1.

A. n ≥ 10 and hence (n+ 1)− 3 ≥ 8

B. n ≥ 8 and hence (n+ 1)− 3 ≥ 8

C. n ≥ 8 and hence (n+ 1) ≥ 9

Choose the appropriate statement to fill in Blank 2.

A. x′ = x, y′ = y

B. x′ = x+ 1, y′ = y + 1

C. x′ = x+ 1, y′ = y

D. x′ = x, y′ = y + 1

E. x′ = x− 1, y′ = y − 1

F. x′ = x− 1, y′ = y

G. x′ = x, y′ = y − 1

2. Winning strategy.

Recall the game Nim from class.

(a) Why did we use strong induction to prove that Player 2’s strategy guarantees a win?

i. Because there are two players in the game.

ii. Because each turn can involve a player taking some positive number of jellybeans from a
pile, not just one jellybean.
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iii. Because the strategy player 2 uses depends on what player 1 does.

iv. Because the set of natural numbers is recursively defined.

(b) If we modify the game so that in each turn, a player could take jellybeans from one or both piles,
which player has a winning strategy?

i. Player 1.

ii. Player 2.

iii. Neither in general, the existence of a winning strategy for the players depends on how many
jellybeans are in each pile to start.

(c) If we modify the game so that in each turn, a player must take exactly one jellybean, which
player has a winning strategy?

i. Player 1.

ii. Player 2.

iii. Neither in general, the existence of a winning strategy for the players depends on how many
jellybeans are in each pile to start.

3. Linked lists.

Recall the definition of linked lists from class.

Consider this (incomplete) definition:

Definition The function increment : that adds 1 to the data in each node of a linked
list is defined by:

increment : →
Basis Step: increment([]) = []
Recursive Step: If l ∈ L, n ∈ N increment((n, l)) = (1 + n, increment(l))

Consider this (incomplete) definition:

Definition The function sum : L → N that adds together all the data in nodes of the list is defined
by:

sum : L → N
Basis Step: sum([]) = 0
Recursive Step: If l ∈ L, n ∈ N sum((n, l)) =

You will compute a sample function application and then fill in the blanks for the domain and codomain
of each of these functions.

(a) Based on the definition, what is the result of increment((4, (2, (7, []))))? Write your answer
directly with no spaces.

(b) Which of the following describes the domain and codomain of increment?

i. The domain is L and the codomain is N
ii. The domain is L and the codomain is N×L

iii. The domain is L× N and the codomain is
L

iv. The domain is L× N and the codomain is
N

v. The domain is L and the codomain is L

vi. None of the above

(c) Assuming we would like sum((5, (6, []))) to evaluate to 11 and sum((3, (1, (8, [])))) to evaluate to
12, which of the following could be used to fill in the definition of the recursive case of sum?
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i.

{
1 + sum(l) when n ̸= 0

sum(l) when n = 0

ii. 1 + sum(l)

iii. n+ increment(l)

iv. n+ sum(l)

v. None of the above

(d) Choose only and all of the following statements that are well-defined; that is, they correctly
reflect the domains and codomains of the functions and quantifiers, and respect the notational
conventions we use in this class. Note that a well-defined statement may be true or false.

i. ∀l ∈ L (sum(l))

ii. ∃l ∈ L (sum(l) ∧ length(l))

iii. ∀l ∈ L (sum(increment(l)) = 10)

iv. ∃l ∈ L (sum(increment(l)) = 10)

v. ∀l ∈ L∀n ∈ N ((n× l) ⊆ L)

vi. ∀l1 ∈ L∃l2 ∈ L (increment(sum(l1)) = l2)

vii. ∀l ∈ L (length(increment(l)) = length(l))

(e) Choose only and all of the statements in the previous part that are both well-defined and true.

4. Primes and divisors

(a)

Recall that a prime factorization is a product of primes (potentially with some of the primes
occurring more than once). Select all and only the correct prime factorizations of positive integers.

i. 2 · 2 · 2 · 2
ii. 3

iii. 3 · 4 · 5
iv. 17 · 21
v. 2 · 11

(b)

We will prove that there is no greatest prime number

Proof Assume, towards a BLANK1, that there is a greatest prime number, call it nBIG. In
particular, this means that there are finitely many primes. Let’s label them in order p1, . . . , pn
where p1 = 2 and pn = nBIG. Choose r = BLANK2. We proved in class that r is true. It remains
to show that (under our assumption) r is false, because that would complete the contradiction
argument. Define the integer

C = (p1 · · · pn) + 1

This is a positive integer greater than 1. However, we will show that it does not have any prime
factors and thus is not a product of primes. By our assumption, the only prime numbers are
p1, . . . , pn. Thus, to show that C does not have any prime factors means to show that pi is not
a factor of C for each value of i from 1 to n. Towards a universal generalization, let i be an
arbitrary between 1 and n (inclusive). We need to prove that pi is not a factor of C. By definition
of C,

C = pi(p1 · · · pi−1pi+1 · · · pn) + 1

so C div pi = p1 · · · pi−1pi+1 · · · pn and C mod pi = 1 (because pi > 1 since it is prime). Since
C mod pi ̸= 0, pi is not a factor of C. Thus C witnesses that the universal claim is false, and
we have proved that r is false.

i. BLANK1
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A. universal generalization

B. proof of existential by witness

C. direct proof

D. proof by contrapositive

E. proof by cases

F. proof by contradiction

ii. BLANK2

A. The least prime number is 2.

B. There is a greatest prime number.

C. There is a least prime number.

D. Every positive integer greater than 1 is a product of primes.

E. Every positive integer has a base expansion.

F. There is a greatest integer.

G. There is no greatest integer.

(c)

We will consider two ways for calculating the gcd. In each part of the question, you’ll calculate
gcd( (306, 120) ).

i. The first approach uses some of the claims we proved in class to get the following algorithm:

Euclidean algorithm for calculating greatest common divisor
1 procedure Euclidean(a : a p o s i t i v e in t ege r , b : a p o s i t i v e i n t e g e r )
2 x := a
3 y := b
4 while y ̸= 0
5 r := x mod y
6 x := y
7 y := r
8 return x {the result of gcd( (a, b) )}

Tracing this algorithm, lines 2 and 3 initialize the variables

x := 306 y := 120

Entering the while loop, the variable r is initialized to

r := 66

because 306 = 2 ·120+66 so 306 mod 120 = 66. Calculate and fill in the updated value of r
in each subsequent iteration of the while loop, and then give the value of gcd( (306, 120) ).

ii. The second approach uses the representation of positive integers greater than 1 as products
of primes. To calculate gcd( (a, b) ) we find the prime factorizations of each of a and b, and
then calculate the number that results from multiplying together terms pc where p is a prime
that appears in both prime factorizations of a and b and c is the minimum number of times
p appears in the two factorizations.
Select the prime factorizations for 306 and 120 and express their gcd as a product of powers
of primes.
Possible factorizations:

A. 306 = 2 · 153, 120 = 2 · 60
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B. 306 = 1 · 2 · 3 · 3 · 17, 120 = 1 · 3 · 5 · 8
C. 306 = 2 · 3 · 3 · 17, 120 = 2 · 2 · 2 · 3 · 5
Possible gcd choices:

A. 2

B. 2 · 3
C. 5 · 17
D. 23 · 32

E. 23 · 32 · 5 · 8 · 17

5. Proof strategies

(a)

Select all and only the situations in which the given proof strategy would be available.

i. When might it be appropriate to use induction?

A. To prove that an existential claim over the set of integers is true.

B. To prove that a universal claim over the real numbers is true.

C. To prove that a conditional claim is true.

D. None of the above.

ii. When might it be appropriate to use proof by contradiction?

A. To prove that an existential claim over the set of integers is true.

B. To prove that a universal claim over the real numbers is true.

C. To prove that a conditional claim is true.

D. None of the above.

(b)

Goals for this question: recognize that we can prove the same statement in different ways. Trace
proofs and justify why they are valid.

Below are two proofs of the same statement: fill in the blanks with the expressions below.

Claimed statement: (a)

Proof 1: Using De Morgan’s law for quantifiers, we can rewrite this statement as a
universal of the negation of the body of the statement. Towards a proof by universal
generalization, let x be an arbitrary element of Z. Then we need to show that

(b)

We proceed by contradiction to show that

(x is odd ∧ x2 is even) → (c)

We assume by direct proof that (x is odd∧x2 is even). Then, (x2 is even) follows directly
from this assumption, so by definition of conjunction, we must show that (x2 is not even)
to complete the proof. From the assumption, we have that (x is odd). Applying the
definition of odd, x = 2k + 1 for some k ∈ Z. Then x2 = 4k2 + 4k + 1. We can rewrite
the right hand side to 2(2k2+2k)+1. This shows that x2 is odd by the definition of odd,
since choosing j = 2k2 + 2k gives us j ∈ Z with x2 = 2j + 1. Since a number is either
even or odd and not both, and x2 is odd, then it must not be even. This concludes
the proof, as we have assumed the negation of the original statement and deduced a
contradiction from this assumption.
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Proof 2:
1. To Show ∀x ∈ Z¬(x is odd ∧ x2 is even) Rewriting statement using De Mor-

gan’s law for quantifiers

2.
Choose arbitrary x ∈ Z
To Show (d)

By (e)

3. To Show x is odd → ¬(x2 is even) Rewrite previous To Show using
logical equivalence

4.
Assume x is odd
To Show ¬(x2 is even)

By (f)

5. To Show x2 is odd Rewrite previous To Show using
definition of even, odd

6.
Use the witness k, an integer,
where x = 2k + 1

By existential definition of x being
odd

7.
Choose the witness
j = 2k2 + 2k, an integer
To Show x2 = 2j + 1

Show this new To Show is true to
prove the existential definition of x2

being odd

8. To Show (2k + 1)2 = 2j + 1 Rewrite previous To Show using
definition of k

9. To Show (2k + 1)2 = 2(2k2 + 2k) + 1 Rewrite previous To Show using
definition of j

10. To Show T By algebra: multiplying out the
LHS; factoring the RHS

QED Because we got to T only by rewrit-
ing To Show to equivalent state-
ments, using valid proof techniques
and definitions.

Consider the following expressions as options to fill in the two proofs above. Give your answer
as one of the numbers below for each blank a-c. You may use some numbers for more than one
blank, but each letter only uses one of the expressions below.

i. ∃x ∈ Z (x is odd ∧ x2 is even)

ii. ¬∃x ∈ Z (x is odd ∧ x2 is even)

iii. ∃x ∈ Z (x is odd ∧ x is even)

iv. ¬∃x ∈ Z (x is odd ∧ x is even)

v. ∃x ∈ Z (x2 is odd ∧ x2 is even)

vi. ¬∃x ∈ Z (x2 is odd ∧ x2 is even)

vii. (x2 is even ∧ x2 is not even)

viii. ¬(x is odd ∧ x2 is even)

ix. (x is odd ∧ x2 is even)

x. (x is odd ∧ x is not odd)

xi. ¬(x is odd ∧ x is not odd)

xii. x2 is even

xiii. x2 is odd

xiv. universal generalization

xv. proof by cases

xvi. direct proof

xvii. proof by contraposition

xviii. proof by contradiction
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