Logical equivalence identities

(Some) logical equivalences

Can replace \(p\) and \(q\) with any compound proposition

\(\lnot ( \lnot p) \equiv p\) Double negation
\(p \lor q \equiv q \lor p\) \(p \land q \equiv q \land p\) Commutativity Ordering of terms
\((p \lor q) \lor r \equiv p \lor (q \lor r)\) \((p \land q) \land r \equiv p \land (q \land r)\) Associativity Grouping of terms
\(p \land F \equiv F\) \(p \lor T \equiv T\) \(p \land T \equiv p\) \(p \lor F \equiv p\) Domination aka short circuit evaluation
\(\lnot (p \land q) \equiv \lnot p \lor \lnot q\) \(\lnot (p \lor q) \equiv \lnot p \land\lnot q\) DeMorgan’s Laws
\(p \to q \equiv \lnot p \lor q\)
\(p \to q \equiv \lnot q \to \lnot p\) Contrapositive
\(\lnot (p \to q) \equiv p\land \lnot q\)
\(\lnot( p \leftrightarrow q) \equiv p \oplus q\)
\(p \leftrightarrow q \equiv q \leftrightarrow p\)

Extra examples:

\(p \leftrightarrow q\) is not logically equivalent to \(p \land q\) because

\(p \to q\) is not logically equivalent to \(q \to p\) because

Logical operators example truth table

Input Output
\(p\) \(q\) \(r\) \((p \land q) \oplus (~ ( p \oplus q) \land r~)\) \((p \land q) \vee (~ ( p \oplus q) \land r~)\)
\(T\) \(T\) \(T\)
\(T\) \(T\) \(F\)
\(T\) \(F\) \(T\)
\(T\) \(F\) \(F\)
\(F\) \(T\) \(T\)
\(F\) \(T\) \(F\)
\(F\) \(F\) \(T\)
\(F\) \(F\) \(F\)

Logical equivalence

Logical equivalence : Two compound propositions are logically equivalent means that they have the same truth values for all settings of truth values to their propositional variables.

Tautology: A compound proposition that evaluates to true for all settings of truth values to its propositional variables; it is abbreviated \(T\).

Contradiction: A compound proposition that evaluates to false for all settings of truth values to its propositional variables; it is abbreviated \(F\).

Contingency: A compound proposition that is neither a tautology nor a contradiction.

Logical equivalence extra example

Extra Example: Which of the compound propositions in the table below are logically equivalent?

Input Output
\(p\) \(q\) \(\lnot (p \land \lnot q)\) \(\lnot (\lnot p \lor \lnot q)\) \((\lnot p \lor q)\) \((\lnot q \lor \lnot p)\) \((p \land q)\)
\(T\) \(T\)
\(T\) \(F\)
\(F\) \(T\)
\(F\) \(F\)