
trace-algorithms

Algorithm redundancy

Real-life representations are often prone to corruption. Biological codes, like RNA, may mutate naturally1

and during measurement; cosmic radiation and other ambient noise can flip bits in computer storage2. One
way to recover from corrupted data is to introduce or exploit redundancy.

Consider the following algorithm to introduce redundancy in a string of 0s and 1s.

Create redundancy by repeating each bit three times
1 procedure redun3(ak−1 · · · a0 : a nonempty b i t s t r i n g )
2 for i := 0 to k − 1
3 c3i := ai
4 c3i+1 := ai
5 c3i+2 := ai
6 return c3k−1 · · · c0

Decode sequence of bits using majority rule on consecutive three bit sequences
1 procedure decode3(c3k−1 · · · c0 : a nonempty b i t s t r i n g whose l ength i s an i n t e g e r mu l t ip l e o f 3)
2 for i := 0 to k − 1
3 i f exac t l y two or three o f c3i, c3i+1, c3i+2 are s e t to 1
4 ai := 1
5 else
6 ai := 0
7 return ak−1 · · · a0

Give a recursive definition of the set of outputs of the redun3 procedure, Out,

Consider the message m = 0001 so that the sender calculates redun3(m) = redun3(0001) = 000000000111.

Introduce errors into the message so that the signal received by the receiver is but the
receiver is still able to decode the original message.

Challenge: what is the biggest number of errors you can introduce?

Building a circuit for lines 3-6 in decode procedure: given three input bits, we need to determine whether
the majority is a 0 or a 1.

c3i c3i+1 c3i+2 ai
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

Circuit

1Mutations of specific RNA codons have been linked to many disorders and cancers.
2This RadioLab podcast episode goes into more detail on bit flips: https://www.wnycstudios.org/story/bit-flip

CC BY-NC-SA 2.0 Version September 25, 2024 (1)

https://www.wnycstudios.org/story/bit-flip
https://creativecommons.org/licenses/by-nc-sa/2.0/


Algorithm rna mutation insertion deletion

Recall that S is defined as the set of all RNA strands, nonempty strings made of the bases in B = {A, U, G, C}.
We define the functions

mutation : S × Z+ ×B → S insertion : S × Z+ ×B → S

deletion : {s ∈ S | rnalen(s) > 1} × Z+ → S with rules

1 procedure mutation(b1 · · · bn : a RNA strand , k : a positive integer , b : an element of B )
2 for i := 1 to n
3 i f i = k
4 ci := b
5 else
6 ci := bi
7 return c1 · · · cn {The return value is a RNA strand made of the ci values}

1 procedure insertion(b1 · · · bn : a RNA strand , k : a positive integer , b : an element of B )
2 i f k > n
3 for i := 1 to n
4 ci := bi
5 cn+1 := b
6 else
7 for i := 1 to k − 1
8 ci := bi
9 ck := b

10 for i := k + 1 to n+ 1
11 ci := bi−1

12 return c1 · · · cn+1 {The return value is a RNA strand made of the ci values}

1 procedure deletion(b1 · · · bn : a RNA strand with n > 1 , k : a positive integer)
2 i f k > n
3 m := n
4 for i := 1 to n
5 ci := bi
6 else
7 m := n− 1
8 for i := 1 to k − 1
9 ci := bi

10 for i := k to n− 1
11 ci := bi+1

12 return c1 · · · cm {The return value is a RNA strand made of the ci values}

CC BY-NC-SA 2.0 Version September 25, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Algorithm definition

New! An algorithm is a finite sequence of precise instructions for solving a problem.

Algorithms can be expressed in English or in more formalized descriptions like pseudocode or fully executable
programs.

Sometimes, we can define algorithms whose output matches the rule for a function we already care about.
Consider the (integer) logarithm function

logb : {b ∈ Z | b > 1} × Z+ → N

defined by
logb( (b, n) ) = greatest integer y so that by is less than or equal to n

Calculating integer part of base b logarithm
1 procedure logb(b ,n : p o s i t i v e i n t e g e r s with b > 1)
2 i := 0
3 while n > b− 1
4 i := i+ 1
5 n := n div b
6 return i {i holds the i n t e g e r part o f the base b l ogar i thm of n}

Trace this algorithm with inputs b = 3 and n = 17

b n i n > b− 1?
Initial value 3 17
After 1 iteration
After 2 iterations
After 3 iterations

Compare: does the output match the rule for the (integer) logarithm function?

CC BY-NC-SA 2.0 Version September 25, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Base expansion algorithms

Two algorithms for constructing base b expansion from decimal representation

Most significant first: Start with left-most coefficient of expansion (highest value)

Informally: Build up to the value we need to represent in “greedy” approach, using units determined by
base.

Calculating base b expansion, from left
1 procedure baseb1(n, b : p o s i t i v e i n t e g e r s with b > 1)
2 v := n
3 k := 1+ output o f logb a lgor i thm with inputs b and n
4 for i := 1 to k
5 ak−i := 0
6 while v ≥ bk−i

7 ak−i := ak−i + 1
8 v := v − bk−i

9 return (ak−1, . . . , a0){(ak−1 . . . a0)b is the base b expansion of n}

CC BY-NC-SA 2.0 Version September 25, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Least significant first: Start with right-most coefficient of expansion (lowest value)

Idea: (when k > 1)

n = ak−1b
k−1 + · · ·+ a1b+ a0

= b(ak−1b
k−2 + · · ·+ a1) + a0

so a0 = n mod b and ak−1b
k−2 + · · ·+ a1 = n div b.

Calculating base b expansion, from right
1 procedure baseb2(n, b : p o s i t i v e i n t e g e r s with b > 1)
2 q := n
3 k := 0
4 while q ̸= 0
5 ak := q mod b
6 q := q div b
7 k := k + 1
8 return (ak−1, . . . , a0){(ak−1 . . . a0)b is the base b expansion of n}

CC BY-NC-SA 2.0 Version September 25, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Base conversion algorithm

Practice: write an algorithm for converting from base b1 expansion to base b2 expansion:

CC BY-NC-SA 2.0 Version September 25, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

