Logical operators full truth table

Input Output
Conjunction Exclusive or Disjunction Conditional Biconditional
\(p\) \(q\) \(p \wedge q\) \(p \oplus q\) \(p \vee q\) \(p \to q\) \(p \leftrightarrow q\)
\(T\) \(T\) \(T\) \(F\) \(T\) \(T\) \(T\)
\(T\) \(F\) \(F\) \(T\) \(T\) \(F\) \(F\)
\(F\) \(T\) \(F\) \(T\) \(T\) \(T\) \(F\)
\(F\) \(F\) \(F\) \(F\) \(F\) \(T\) \(T\)
\(p\) and \(q\) \(p\) xor \(q\) \(p\) or \(q\) “if \(p\) then \(q\) \(p\) if and only if \(q\)

Logical operators truth tables

Truth tables: Input-output tables where we use \(T\) for \(1\) and \(F\) for \(0\).

Input Output
Conjunction Exclusive or Disjunction
\(p\) \(q\) \(p \land q\) \(p \oplus q\) \(p \lor q\)
\(T\) \(T\) \(T\) \(F\) \(T\)
\(T\) \(F\) \(F\) \(T\) \(T\)
\(F\) \(T\) \(F\) \(T\) \(T\)
\(F\) \(F\) \(F\) \(F\) \(F\)
image image image
Input Output
Negation
\(p\) \(\lnot p\)
\(T\) \(F\)
\(F\) \(T\)
image